
STAR Trigger / DAQ

ePIC WG 9/22/22

STAR Trigger / DAQ
Jeff Landgraf

ePIC WG 9/22/22

1. Overview of STAR DAQ
2. Elements (Potentially) Applicable to EPIC

• Operating modes
• Organization and Extension Scheme
• Data Format
• Run Control
• System Administration
• QA
• Monitoring
• Logging

The STAR
Collaboration at RHIC

STAR is:
753 collaborators
70 institutions / 14 countries

RHIC collides protons, gold
and anything in between.

Maximum energy:
200 GeV / nucleon
500 GeV for protons

Heavy Ion & Polarized Proton
Programs

January 23, 2019

Proton / Proton 500GeV (2017)

Au / Au 54GeV

- Long Fills
- High Rates
- Complex Trigger
- Radiation Issues

* Detector Failures
* Detector Omission

- Short Fills
- Lowish Rates
- Simple Trigger
- Few failures

The Trigger Detectors:

Trigger detectors are capable of reading out every bunch crossing!
- Some read out all of their data each bunch crossing (ZDC, BBC, EPD, VPD…)
- Others read out a useful portion of their data each bunch crossing (EMC’s, TOF)

Getting The 128 Bits
To the TCU (The DSM / QT Tree):

Getting The 128 Bits
To the TCU (The DSM / QT Tree):

- DSM are programmable FPGA based boards with
128 inputs bits and 32 bits outputs.

- The QT have a similar role, but can handle some
analog input data.

- They receive the data directly from the electronics
Of the various trigger detectors.

- They are arranged in 3 layers, and the boards
within a layer have no information from
the other boards in the same layer.

- They can have different code running each time
A run is configured, so we have a protocol
To group the firmware with along with appropriate
Labels in the run control software.

- The DSM crates are connected to a computer
called L2 using a custom network called STP.
L2 gathers the data from all of the DMS/QT boards
And ships it to DAQ.

The Brains of the L0 Trigger (Trigger Control Unit):

TCU

128 Input Bits From
Trigger Detectors

16 Busy Signals
From Detectors

20 bits to the DAQ
detectors

(+16 bits specifying
which detectors)

Note: 1.7usec latency!

The Configuration File:

- The TCU supports up to 64 independent triggers running at the same time
- The concept of a trigger in STAR requires that ALL of the conditions L0 / L1 / L2 and HLT

be fully specified.
- Rates are specified by a single prescale for every run, but that prescale can be specified by a program.

After the TCU decides to trigger an event:

TCU
TCDTCDTCDTCDTCDTCD

20 Bits
Trigger Info DetectorsDetectorsDetectorsDetectorsDetectorsDetectors16 Bits
Which TCD

20 Bits
Trigger Info

The Trigger Info is:

12 Bits Token. A unique identifier for the event until
the all of it’s components can be assembled.

4 Bits Trigger command (laser / pulser / configuration evt/ physics)

4 Bits DAQ command (read raw)

*** The detectors have no information as to what trigger fired!

Not So Random Detector Example (TPX – the outer part of the TPC):

- 96 RDO’s contain a fiber back to
TPX DET computer.

- 18 FEE’s / RDO

- Black Event ~50MB

- The fee’s use ALICE’s ALTRO chip
* digitization
* pedestal subtraction
* tail cancellation
* zero suppression

- Electronics alone reduces event
Size to about 2-12MB

- 36 TPX DET computers perform
2 dimensional cluster finding to
Reduce data volume down to
.25 – 2 MB/event.

* The computers that receive the data from
The detector fibers are called DETS. There
Are roughly 75 DET computers.

* The event builders consists of 14
computers. Each containing 10-24 TB
of buffer disk.

* The event building network is a hybrid of
Gb and 10Gb ethernet. The Event Builders
and HLT computers are on 10Gb ports.
The DETS use Gb ethernet, though the
Switches have 10Gb uploads to the event
Builders

* The HLT trigger is on
A separate 10Gb network along with the
Event Builders. The EVBs send fully
Assembled events to HLT, and receive
An appropriate trigger decision.

* The aggregate bandwidth of the system
Is about 2000MB / second.

* Completed events are shipped to a tape robot
system called HPSS.

The Event Building Network:

Monitoring / QA / Databases:

DETS

EVBs

RCF

L4

L2

L2 QA
(Web Pages)

L2 CPU

DSM CPU

DSM/QT
Detectors

L4 EVB

Monitoring
(Web Pages)

L4 Event
Pool

TCD

Run Control
Handler

Run Control
User Interface

Monitoring
Server

Logging
Server

Database
Server(s)

Event Pool

RCC

Jevp Plots
(Web Pages)

TCD CPU

L2 QA

L0 CPU

Run Log
(Web Pages)

Full (Color Coded) Trigger/DAQ Data Flow:

L3 Event
Display

Trigger
Detectors

TCU

RCC

DETS

EVBs

RCF

L4

L2

L2 QA
(Web Pages)

L2 CPU

DSM CPU

DSM/QT
Detectors

L4 EVB

Monitoring
(Web Pages)

L4 Event
Pool

TCD

Run Control
Handler

Run Control
User Interface

Monitoring
Server

Logging
Server

Database
Server(s)

Event Pool

RCC

Jevp Plots
(Web Pages)

TCD CPU

L2 QA

L0 CPU

Run Log
(Web Pages)

RHIC Clock vs Local Clock Running

L3 Event
Display

Trigger
Detectors

TCU

RCC

STAR
• The RCC board accepts the clock from the

V124
• This RCC can either use the V124 clock or a

local-oscillator
• Used for debugging when no clock available

and for cosmics

EPIC
• We should build a local oscillator mode into

the timing system

DETS

EVBs

RCF

L4

L2

L2 QA
(Web Pages)

L2 CPU

DSM CPU

DSM/QT
Detectors

L4 EVB

Monitoring
(Web Pages)

L4 Event
Pool

TCD

Run Control
Handler

Run Control
User Interface

Monitoring
Server

Logging
Server

Database
Server(s)

Event Pool

RCC

Jevp Plots
(Web Pages)

TCD CPU

L2 QA

L0 CPU

Run Log
(Web Pages)

Stand-Alone Running Modes

L3 Event
Display

Trigger
Detectors

TCU

RCC
STAR
• There is a separate TCD for each detector
• The TCD’s have a stand alone mode where a

local oscillator is used for the clock and
triggers are issued via software or a web
interface

• This gives full local debugging of the full
DAQ electronics chain, without needing the
trigger system, and without impacting
ongoing beam operations.

• Data format supports independent files
without effort

EPIC
• Similar emulation can and should be

implemented in the readout computer. All
timing input to the DAM board should have
the capability of being set via software in
emulated mode

• From the DAQ electronics perspective there
is no distinction from regular running

• The natural independence of a streaming
DAQ would make this difficult to break!

DETS

EVBs

RCF

L4

L2

L2 QA
(Web Pages)

L2 CPU

DSM CPU

DSM/QT
Detectors

L4 EVB

Monitoring
(Web Pages)

L4 Event
Pool

TCD

Run Control
Handler

Run Control
User Interface

Monitoring
Server

Logging
Server

Database
Server(s)

Event Pool

RCC

Jevp Plots
(Web Pages)

TCD CPU

L2 QA

L0 CPU

Run Log
(Web Pages)

TCD Only Runs…

L3 Event
Display

Trigger
Detectors

TCU

RCC
STAR
• There is similar capability to bypass the

trigger using TCD-ONLY runs. In this case
the TCD CPU emulates the trigger including
multiple defined triggers, trigger rates,
detector mixes and the like. The full DAQ
chain is run via run control and including
QA, high level triggers, and normal storage
to HPSS

• All trigger nodes are bypassed
• Dummy trigger databanks are built
• Frequently use this mode for debugging and

for noise check runs and for detector
pedestal runs.

EPIC
• I’m not sure there is a close analog in EPIC

DETS

EVBs

RCF

L4

L2

L2 QA
(Web Pages)

L2 CPU

DSM CPU

DSM/QT
Detectors

L4 EVB

Monitoring
(Web Pages)

L4 Event
Pool

TCD

Run Control
Handler

Run Control
User Interface

Monitoring
Server

Logging
Server

Database
Server(s)

Event Pool

RCC

Jevp Plots
(Web Pages)

TCD CPU

L2 QA

L0 CPU

Run Log
(Web Pages)

Trigger Only Runs…

L3 Event
Display

Trigger
Detectors

TCU

RCC

STAR
• DAQ components can simply be removed

from the Run Control. Data is saved locally
on trigger computers

• Trigger Pedestal runs

Organization and Detector Extension

The common elements of the readout
Are the DETs and the EVBs

The DETs have numerous detector specific
Functions, but The interface to EVB is
uniform:

• TCP/IP push using iccp2k header
• Data shipped in SFS data file format
• SFS path provided according to source node
• Routing from DET to EVB handled according to static mapping of token <-> EVB
• Flow control handled by speed factor for each EVB used to construct token map

In practice, EVBs contain significant detector specific processing but this is modularized in
trigger algorithms, format checkers. In order to incorporate a new detector the mapping
from the srcNode to the path is the only code that needs to be added.

DET
EVB

DET

DET
EVB

struct iccp2k {
u_int words; // words of the bank to follow (not including this header)
u_short srcNode; // source node
u_short dstNode; // destination node
u_char srcTask;
u_char dstTask;
u_short token;
u_char cmd;
u_char pad1;
u_short payload_words; // Number of words of payload.

};

Properties:

• Data banks are specified by an arbitrary linux-like file
path, data in the form of a file

• There is a linux filesystem like interface
• Official DAQ Reader for each detector navigates to

appropriate bank by path
• Data writing files can be “streamed”

• No need to change earlier data (sizes for example)
beyond current record while writing

• Files can be appended and maintain valid files
• Files can be separated and maintain valid files (on

absolute paths)

Data File Format: SFS File System

• One doesn’t know for certain when a directory is finished being added, so in practice I add
the rule that a change of the base directory closes that directory.

[evp] /a/23103023/> fs 12452 ls -r
[173204 bytes] /#2402088/
[24 bytes] /#2402088/EvbSummary
[112 bytes] /#2402088/EventSummary
[256 bytes] /#2402088/TRGID
[9972 bytes] /#2402088/btow/
[9972 bytes] /#2402088/btow/sec01/
[9972 bytes] /#2402088/btow/sec01/rb01/
[9972 bytes] /#2402088/btow/sec01/rb01/raw
[2100 bytes] /#2402088/etow/
[2100 bytes] /#2402088/etow/sec01/
[2100 bytes] /#2402088/etow/sec01/rb01/
[2100 bytes] /#2402088/etow/sec01/rb01/raw
[86604 bytes] /#2402088/fcs/
[2852 bytes] /#2402088/fcs/sec01/
(etc...)

Run Control / Configuration
• Run Control Handler is a server maintaining states
• Run Control is a java client users use to start/stop runs and access states and configuration
• Configuration Manager is the same application without the control features
• Clients follow simple ethernet protocol (or inherit from class demanding a handful of

member functions: “Start Run”, “Stop Run”, “Send Config”, “Force Stop”, “Reboot”)
• XML configuration file
• Mysql relational DB for “old” parameters
• Mongo object DB for “all” parameters
• Mongo DB records, and XML files, and the bulk of the Configuration GUI are generated via

Java’s “reflection” classes directly from the java configuration file definition.

System Administration

• We use PXE boot from static NFS disk images for all DETs and EVBs
• Originally based upon SL4’s “livecd” features, but these features lost support

• I now maintain a set of (not quite) turnkey scripts of my own to build images from
virtual machine linux installations

• System disk uses AUFS which does limit my kernel choices
• Have plans to update the union filesystem when I next upgrade Linux versions
• Machine configuration is done in several steps

• IP addresses and names come from the statically defined DHCP entries
• Grub configuration based on these names define boot parameters which include

an “etc directory” path for each type of computer which is copied over the static
etc directory built into the images before linux boot

• Ethernet configuration (of the non-boot interfaces) is done from a master file so
I can access it from one place.

• A user script running at the end of the systemd boot process
• Has worked well thus far… I don’t know if I save time in the end, but the time I spend

is during shutdowns, not during runs, and all machines are setup the same.

Online QA

Maintain 2 separate but nearly identical QA systems, one based on the HLT results and
one developed on direct detector data

Maintain a pool of data accumulating at ~10-20hz(500hz). This data is stored for
approximately 2-3 weeks and rolled over as data accumulates. Data mix is defined in
run control by trigger.

JevpBuilders are defined by detector groups. These create the histograms using root. I
force a wrapper “JevpPlot” class to be used because of root’s association between
histograms, canvas’s and global parameters for various display features. The
JevpBuilders can be run stand-alone to produce pdf files&root files for development,
debugging, and sometimes analysis.

A production server calls each of the JevpBuilders and periodically writes all plots to a
large ceph filesystem accessible to the web.

Javascript/PHP display for all histograms.

