Lepton Flavor Portal Matter

Lisa L. Everett

in collaboration with George Wojcik, Shu Tian Eu, and Ricardo Ximenes

2211.09918 [PLB 841 (2023) 137931], 2303.12983

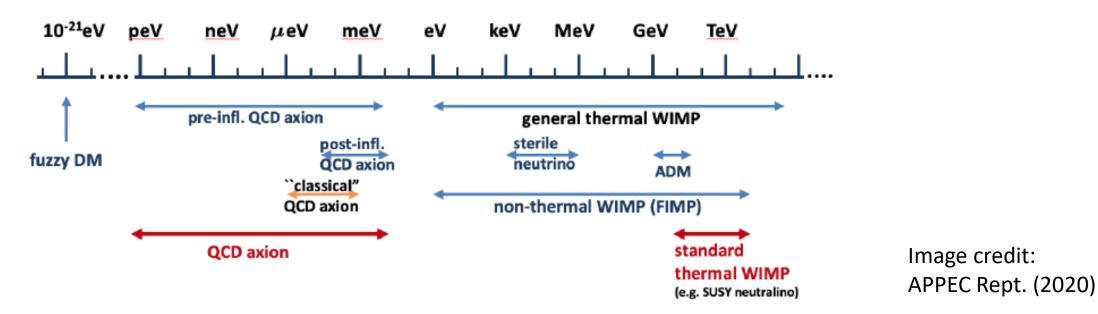
Seminar at Brookhaven National Laboratory, May 25, 2023

Introduction/Motivation

Dark matter: gravitationally confirmed by a range of astrophysical observations, but wide range of possibilities for its properties (mass and couplings)

Landscape of DM candidates has exploded in the past decade+

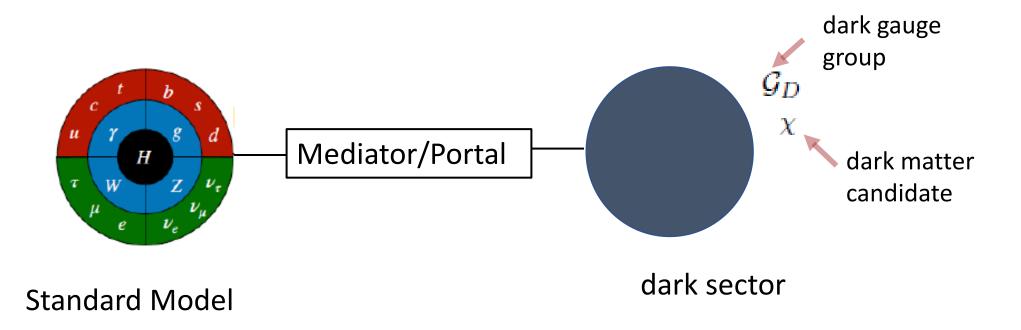
(see e.g. K. Zurek's talk at Dark Matter 2023 for an excellent recent review)



many reviews: see e.g. Battaglieri et al. '17, Gori et. al, Snowmass 2021 report

Here, interested in a particular category of theories:

"dark sector" paradigm with light DM, light mediator

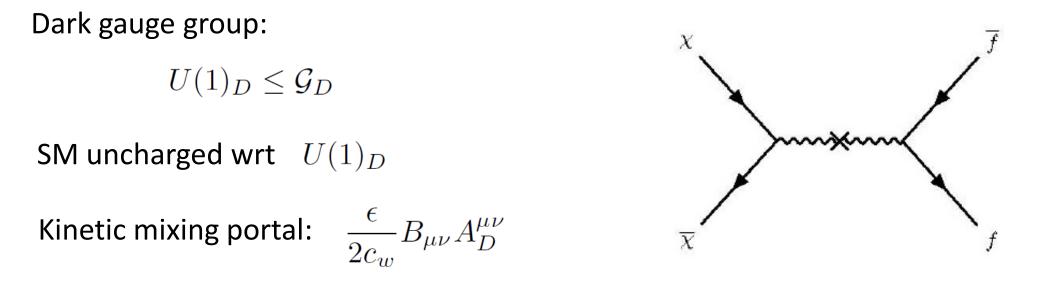


Many possible "portals" for interaction with SM (Higgs, gauge, neutrino,...)

vast literature: see e.g. Pospelov et al. '08, Davoudiasl et al. '12, Curtin et al. '14, ...

Focus here on a certain sub-category:

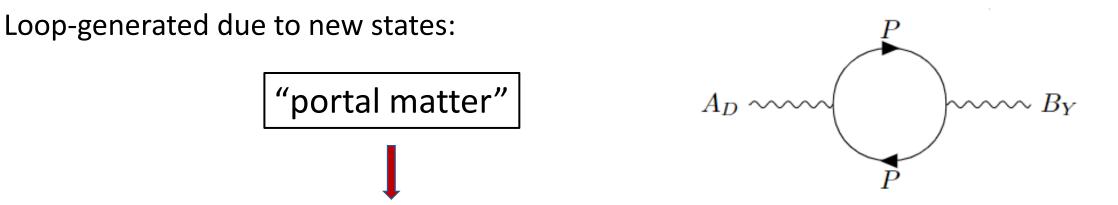
Vector portal/kinetic mixing models



Via KM, SM develops couplings $\sim \epsilon e Q$ to dark photon

can obtain correct DM relic abundance for $m_{\chi}, m_{A_D} \sim 0.1 - 1\,$ GeV, $\epsilon \sim 10^{-(3-5)}$

Model-building framework: origin of KM parameter ϵ



heavy particles charged under SM hypercharge and $U(1)_D$

$$\epsilon = c_W \frac{g_D g_Y}{12\pi^2} \sum_i Q_{Y_i} Q_{D_i} \log\left(\frac{m_i^2}{\mu^2}\right)$$

finite and calculable
$$\epsilon \longrightarrow \sum_{i} Q_{Y_i} Q_{D_i} = 0$$

Holdom 1986,...

Portal Matter Theory/Phenomenology Basics

interested in fermionic PM light enough to be probed at current/near-future expts

direct searches, precision EW, Higgs constraints $h_{
m SM}
ightarrow gg, \gamma\gamma$

 \rightarrow PM should be vectorlike under SM and $U(1)_D$

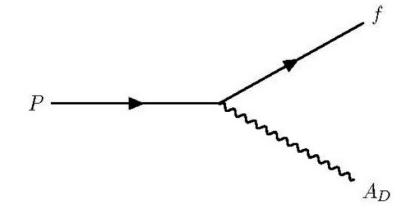
most straightforward option for decay:

PM should have identical SM quantum numbers as some SM matter field(s) and mix with them

Distinctive phenomenological signatures!

decays to (highly boosted) SM fermion/jet +dark photon or dark Higgs

(compare usual vectorlike fermion case)



Portal Matter Model-Building Framework

minimal scenarios: $U(1)_D$ one dark Higgs h_D , single PM vectorlike pair VLL: E^{\pm}, L^{\pm} VLQ: $T^{\pm}, B^{\pm}, Q^{\pm}$

Rizzo 1810.07531 Kim et al. 1904.05893 Carvunis et al. 2209.14305

more involved models:

extended dark sector gauge group G_D — extended fermion PM and scalar content

many BSM options:

GUT paradigm, extra dimensions...

 $\mathcal{G}_D \longrightarrow U(1)_D$

Rizzo 2206.09814, 2209.00688, 2302.12698

Rizzo, Reuter 1909.09160, 2011.03529; Rizzo, Wojcik 2302.12698; Wojcik 2205.11545

This talk:

Lepton portal matter and muon *g*-2

construct minimal workable lepton PM scenario that can accommodate $\Delta a_{\mu} = (g_{\mu} - 2)/2$

effect dominated by PM, insensitive to DM details

Lepton **flavor** portal matter

extension with $\mathcal{G}_D = SU(2)_A \times SU(2)_B$ (w/partial $\mu - \tau$ flavor symmetry)

can accommodate muon *g-2*, rich collider phenomenology

Muon anomalous magnetic dipole moment

Current discrepancy: (4.2 sigma)

 $\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (251 \pm 59) \times 10^{-11}$

Abi et al. (Muon g-2), PRL 126, 141801 (2021) Bennett et al. (Muon g-2), PRD 73, 072003 (2006) Aoyama et al., Phys. Rept. 887, 1 (2020)

Might be due to errors in calculation of hadronic contributions...

See e.g. Borsanyi et. al, Nature 593, 51 (2021)

Might be due to physics beyond the SM!

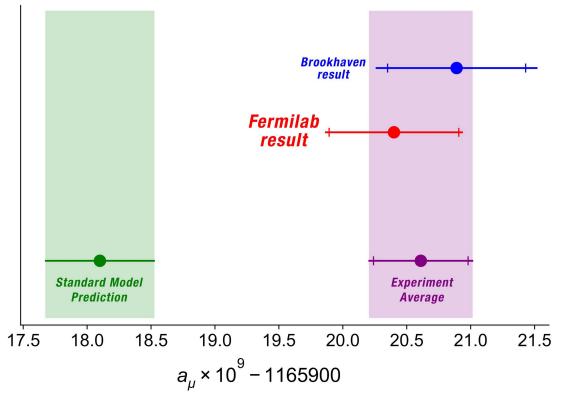
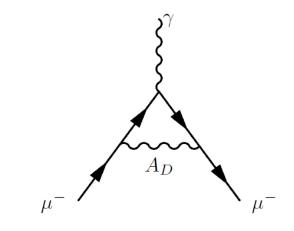


Image credit: R. Postel, Fermilab/Muon g-2 collaboration Dark photon models and muon *g*-2 minimal scenarios: too small!

(i) dark photon, no PM mixed with muon (vector coupling, small KM) $\,\sim \epsilon^2$



Davoudiasl et al. 1402.3620,...

(ii) mix muon with single lepton PM pair E^{\pm}

Rizzo 1810.07531,...

Field	$SU(2)_L \times U(1)_Y$	Q_D
$oldsymbol{l}_{L}=\left(u_{L}^{\mu},\mu_{L} ight) ^{T}$	$\left(2,-\frac{1}{2}\right)$	0
μ_R	(1,-1)	0
$E_{L,R}^{\pm}$	(1 , −1)	<u>±</u> 1
$S = v_S + h_D / \sqrt{2}$	(1,0)	+1

$$y_{\mu}\bar{l}_{L}H\mu_{R} + y_{E}^{+}\bar{E}_{L}^{+}S\mu_{R} + y_{E}^{-}\bar{E}_{L}^{-}S^{\dagger}\mu_{R}$$
$$+M_{E}^{+}\bar{E}_{L}^{+}E_{R}^{+} + M_{E}^{-}\bar{E}_{L}^{-}E_{R}^{-} + h.c.$$

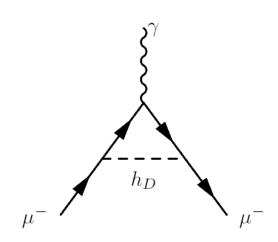
Now several new contributions...

Now both vector and axial vector couplings of muon to dark photon...

$$-e\epsilon\bar{\mu}\gamma_{\mu}(1-y-y\gamma_{5})\mu A_{D}^{\mu} \qquad y \sim \left(\frac{g_{D}}{e\epsilon}\right)\left(\frac{(y_{E}^{+})^{2}v_{s}^{2}}{(M_{E}^{+})^{2}} - \frac{(y_{E}^{-})^{2}v_{s}^{2}}{(M_{E}^{-})^{2}}\right)$$
$$|y| \sim 0.01 - 0.5$$
$$\Delta a_{\mu}^{(A_{D}^{(1)})} \sim 10^{-11} \left(\frac{\epsilon}{10^{-4}}\right)^{2} R(y, m_{A_{D}})$$

+ scalar and gauge boson contributions with PM on internal line...

$$\Delta a_{\mu}^{(h_D)} \sim 10^{-10} \sum_{i=E^+,E^-} \left(\frac{200 \text{ GeV}}{m_i}\right)^2$$
$$\Delta a_{\mu}^{(A_D^{(2)})} \sim -(2 \times 10^{-4}) \left(\frac{g_D}{0.1}\right)^2 \left(\frac{100 MeV}{m_{A_D}}\right)^2 \sum_{i=E^+,E^-} \frac{y_i^2 v_s^2}{m_i^2}$$



 A_D

still too small to accommodate the muon *g*-2 anomaly

Rizzo 1810.07531

A minimal workable framework

Issue – need to couple new physics to **both** chiralities of the muon!

Field	$SU(2)_L \times U(1)_Y$	Q_D
$oldsymbol{l}_L = \left(u^\mu_L, \mu_L ight)^T$	$\left(2,-\frac{1}{2}\right)$	0
μ_R	(1 , −1)	0
$\boldsymbol{L}_{\boldsymbol{L},\boldsymbol{R}}^{\pm} = \left(N_{\boldsymbol{L},\boldsymbol{R}}^{\pm}, L_{\boldsymbol{L},\boldsymbol{R}}^{\pm}\right)^{T}$	$\left(2,-\frac{1}{2}\right)$	<u>+</u> 1
$E_{L,R}^{\pm}$	(1 , −1)	<u>±</u> 1
$S = v_S + h_D / \sqrt{2}$	(1,0)	+1

$$\begin{aligned} \mathcal{L}_{Y} &\supset -y_{\mu} \overline{l}_{L} H \mu_{R} - y_{L}^{+} \overline{l}_{L} S^{\dagger} L_{R}^{+} - y_{L}^{-} \overline{l}_{L} S L_{R}^{-} - y_{E}^{+} \overline{E}_{L}^{+} S \mu_{R} - y_{E}^{-} \overline{E}_{L}^{-} S^{\dagger} \mu_{R} \\ &- y_{LE}^{+} \overline{L}_{L}^{+} H E_{R}^{+} - y_{EL}^{+} \overline{E}_{L}^{+} H^{\dagger} L_{R}^{+} - y_{LE}^{-} \overline{L}_{L}^{-} H E_{R}^{-} - y_{EL}^{-} \overline{E}_{L}^{-} H^{\dagger} L_{R}^{-} \\ &- M_{L}^{+} \overline{L}_{L}^{+} L_{R}^{+} - M_{E}^{+} \overline{E}_{L}^{+} E_{R}^{+} - M_{L}^{-} \overline{L}_{L}^{-} L_{R}^{-} - M_{E}^{-} \overline{E}_{L}^{-} E_{R}^{-} + h.c., \end{aligned}$$

$$\bar{\mu}_{L} \quad \bar{L}_{L}^{+} \quad \bar{E}_{L}^{+} \quad \cdots) \begin{pmatrix} m_{\mu} & y_{L}^{+} \frac{v_{s}}{\sqrt{2}} & 0 \\ 0 & M_{L}^{+} & e^{i\phi_{LE}^{+}} \frac{y_{LE}^{+}}{y_{\mu}} m_{\mu} & \vdots \\ y_{E}^{+} \frac{v_{s}}{\sqrt{2}} & e^{i\phi_{EL}^{+}} \frac{y_{EL}^{+}}{y_{\mu}} m_{\mu} & M_{E}^{+} \\ & & \ddots \end{pmatrix} \begin{pmatrix} \mu_{R} \\ L_{R}^{+} \\ E_{R}^{+} \\ \vdots \end{pmatrix}$$

Now several chirality-flipping masses:

$$m_{\mu} \quad e^{i\phi_{LE}^{\pm}} \frac{y_{LE}^{\pm}}{y_{\mu}} m_{\mu} \qquad e^{i\phi_{EL}^{\pm}} \frac{y_{EL}^{\pm}}{y_{\mu}} m_{\mu}$$

Chirally-enhanced (dominant) contribution:

$$\Delta a_{\mu} \sim \left(\frac{c_L c_R}{24\pi^2} \frac{m_F}{m_{\mu}}\right) \left(\frac{m_{\mu}}{M_{\rm NP}}\right)^2$$
$$\Delta a_{\mu} \approx -\frac{m_{\mu}}{16\pi^2} \sum_{i=+,-} \frac{y_L^i y_E^i}{M_L^i M_E^i} \frac{y_{LE}^i}{y_{\mu}} \cos \phi_{LE}^i$$

Note:

 $y_{EL}^{\pm}, y_{LE}^{\pm}$ can be significantly larger than $y_{\mu} \sim 10^{-4}$

phases (here just relative signs) crucially important for achieving the right sign of the effect

Light dark Higgs + dark photon: no dependence on DM model parameters

entirely a PM effect!

F

 A_D

 h_{D}

$$\Delta a_{\mu} \approx -\Delta a_{\mu}^{(\text{obs})} \left(\frac{y_{LE}^{+}/y_{\mu}}{36} \right) \left(\frac{1 \text{ TeV}}{M_{L}^{+}/y_{L}^{+}} \right) \left(\frac{1 \text{ TeV}}{M_{E}^{+}/y_{E}^{+}} \right)$$

$$\sqrt{M_{L}^{+}M_{E}^{+}} \text{ required to obtain } \Delta a_{\mu} \text{ for}$$

$$y_{L}^{+}y_{E}^{+} = 0.3, 1, 3, \text{ with LHC constraints}$$

$$(\text{HL-LHC, HE-LHC, hh-FCC) \text{ on } M_{E}^{+}$$

$$\Delta a_{\mu} \text{ can be accommodated for}$$

$$y_{LE}^{\pm}/y_{\mu} \sim O(10) \quad M_{L,E}^{\pm} \sim O(\text{TeV})$$

$$q_{LE}^{\pm}/y_{\mu} \sim O(10) \quad M_{L,E}^{\pm} \sim O(\text{TeV})$$

$$q_{LE}^{\pm}/y_{\mu} \sim O(10) \quad M_{L,E}^{\pm} \sim O(\text{TeV})$$

Note: same mechanism as Carcamo Hernandez et al. 1910.10734, but very different parameter space constraints due to $M_{Z'} \sim {
m TeV}$

Constraining the model:

```
At LHC: M_{L,E}^{\pm}: PM decays – repurpose LHC slepton searches
M_E^{\pm} \ge 895 \text{ GeV}, M_L^{\pm} \ge 1050 \text{ GeV}
```

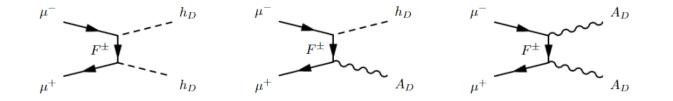
 $y_E^{\pm}, y_L^{\pm}, y_{LE}^{\pm}$: perturbative unitarity

can do better at a (multi-TeV) muon collider:

probe PM masses up to $\sqrt{s}/2$

 y_E^{\pm}, y_L^{\pm} constrained by monophoton searches

 y_{LE}^{\pm} more challenging – only enters in PM decays to other PM



Summary and next steps

achieved a minimal workable lepton PM model that can accommodate Δa_{μ}

for $y_{|E}^{\pm}, y_{L}^{\pm} \sim O(1)$ and TeV-scale PM masses, require $|y_{LE}^{\pm}|v \sim O(\text{few GeV})$

 \longrightarrow perhaps suggestive of $y_{LE}^{\pm} \sim y_{\tau}$

Extension to non-Abelian dark gauge group

finite and calculable kinetic mixing parameter ϵ

origin of $U(1)_D$ charge quantization

origin of PM field content and mixing with muon

(partial) $\mu - \tau$ flavor symmetry (start of framework for lepton flavor mixing)

Lepton Flavor Portal Matter Model

Wojcik, LE, Eu, Ximenes 2303.12983

Choice of non-Abelian semi-simple $\mathcal{G}_D = SU(2)_A \times SU(2)_B$

Desired dark gauge symmetry breaking pattern:

 $SU(2)_A \times SU(2)_B \longrightarrow U(1)_D \longrightarrow$ nothing

achieved via dark Higgs fields Φ (bi-doublet) $\langle \Phi \rangle \sim \text{TeV}$ Δ_A, Δ_B (triplets) $\langle \Delta_A, \Delta_B \rangle \sim \text{GeV}$

will add here dark global symmetry Z_2 Φ (even) $\Delta_{A,B}$ (odd)

$$\implies SU(2)_A \times SU(2)_B \times Z_2 \longrightarrow U(1)_D \times Z_2 \longrightarrow Z'_2$$

Fermion and scalar field content

Fields	$SU(2)_L \times U(1)_Y$	$SU(2)_A$	$SU(2)_B$	<i>Z</i> ₂
L_L , e_R	$\left(2,-\frac{1}{2}\right),(1,-1)$	1	1	+1
Ψ_L , Ψ_R	$\left(2, -\frac{1}{2}\right), (1, -1)$	2	2	+1
V_L , V_R	$(1, -1), (2, -\frac{1}{2})$	1	3	+1
S_L, S_R	$\left(2, -\frac{1}{2}\right)$, (1, -1)	1	1	-1
$\Phi \sim \text{TeV}$	(1,0)	2	2	+1
$\Delta_A \sim \mathrm{GeV}$	(1,0)	3	1	-1
$\Delta_B \sim { m GeV}$	(1,0)	1	3	-1
<i>H</i> ~ 100 GeV	$\left(2,\frac{1}{2}\right)$	1	1	+1

anomaly-free finite, calculable ϵ

 $SU(2)_A \times SU(2)_B \times Z_2$ singlets:

1 SM lepton family (identified with electron)SM Higgs *H*

 $SU(2)_A \times SU(2)_B \times Z_2$ charged:

2 SM lepton families dark photon, dark Higgs PM, new gauge + scalar bosons

Gauge Symmetry Breaking and Scalar Sector

Scalar potential^{**} \longrightarrow $V = V_{SM}(H) + V(\Phi, \Delta_{A,B})$

$$V(\Phi, \Delta_{A,B}) = -\mu_1^2 \operatorname{Tr}(\Phi^{\dagger}\Phi) - \frac{\mu_2^2}{2} \left[\operatorname{Tr}\left(\tilde{\Phi}^{\dagger}\Phi\right) + \text{h.c.} \right] - \mu_3^2 \operatorname{Tr}(\Delta_A^2) - \mu_4^2 \operatorname{Tr}(\Delta_B^2) + \lambda_1 \operatorname{Tr}(\Phi^{\dagger}\Phi)^2 + \frac{\lambda_2}{2} \left[\operatorname{Tr}\left(\tilde{\Phi}^{\dagger}\Phi\right)^2 + \text{h.c.} \right] + \frac{\lambda_3}{2} \left[\operatorname{Tr}(\Phi^{\dagger}\Phi) \operatorname{Tr}\left(\tilde{\Phi}^{\dagger}\Phi\right) + \text{h.c.} \right] + \lambda_4 \operatorname{Tr}(\Delta_B^4) \quad (4) + \lambda_5 \operatorname{Tr}(\Phi^{\dagger}\Phi) \operatorname{Tr}(\Delta_B^2) + \frac{\lambda_6}{2} \left[\operatorname{Tr}\left(\tilde{\Phi}^{\dagger}\Phi\right) \operatorname{Tr}(\Delta_B^2) + \text{h.c.} \right] + \lambda_7 \left| \operatorname{Tr}\left(\tilde{\Phi}^{\dagger}\Phi\right) \right|^2 + \lambda_8 \operatorname{Tr}\left(\Phi^{\dagger}\Delta_A\Phi\Delta_B\right) + \frac{\lambda_9}{2} \left[\operatorname{Tr}\left(\tilde{\Phi}^{\dagger}\Delta_A\Phi\Delta_B\right) + \text{h.c.} \right] + \lambda_{10} \operatorname{Tr}(\Delta_A^4) + \lambda_{11} \operatorname{Tr}(\Phi^{\dagger}\Phi) \operatorname{Tr}(\Delta_A^2) + \frac{\lambda_{12}}{2} \left[\operatorname{Tr}\left(\tilde{\Phi}^{\dagger}\Phi\right) \operatorname{Tr}(\Delta_A^2) + \text{h.c.} \right] + \lambda_{13} \operatorname{Tr}(\Delta_A^2) \operatorname{Tr}(\Delta_B^2), \qquad \tilde{\Phi}_{i\alpha} = -\epsilon_{ij} \Phi^{*j\beta} \epsilon_{\beta\alpha}$$

8+3+3=14 real degrees of freedom \longrightarrow 6 Goldstone modes, 8 massive scalars

**ignoring Higgs portal interactions, which must be strongly suppressed due to *H* invisible width constraints (a standard issue in this class of constructions)

Minimizing the potential:

$$\Phi = \frac{1}{2} \left(\operatorname{Re} \Phi_0 + i \operatorname{Im} \Phi_0 \right) + \sum_{a=x,y,z} \tau_a \left(\operatorname{Re} \Phi_a + i \operatorname{Im} \Phi_a \right) \qquad \Delta_{A,B} = \sum_{a=x,y,z} \tau_a \Delta_{A,B}^a \qquad \tau_a \equiv \sigma_a/2,$$

 $SU(2)_A \times SU(2)_B$ rotations: set Φ vev diagonal and real

$$\langle \operatorname{Re} \Phi_0 \rangle = v_{\Phi} (\cos \theta_{\Phi} + \sin \theta_{\Phi}) \quad \langle \operatorname{Re} \Phi_z \rangle = v_{\Phi} (\cos \theta_{\Phi} - \sin \theta_{\Phi}) \quad 0 \le \theta_{\Phi} \le \pi$$

preserved subgroup

$$\langle \Delta_A^x \rangle = r_\Delta v_\Phi s_{\theta\Delta} c_{\phi_A} s_{\theta_A} \quad \langle \Delta_A^y \rangle = r_\Delta v_\Phi s_{\theta\Delta} s_{\phi_A} s_{\theta_A} \quad \langle \Delta_A^z \rangle = r_\Delta v_\Phi s_{\theta\Delta} c_{\theta_A}$$
$$\langle \Delta_B^x \rangle = r_\Delta v_\Phi c_{\theta\Delta} c_{\phi_B} s_{\theta_B} \quad \langle \Delta_B^y \rangle = r_\Delta v_\Phi c_{\theta\Delta} s_{\phi_B} s_{\theta_B} \quad \langle \Delta_B^z \rangle = r_\Delta v_\Phi c_{\theta\Delta} c_{\theta}$$

 $0 \le \theta_{A,B} \le \pi$ $0 \le \phi_{A,B} \le 2\pi$

 $0 \le \theta_{\Delta} \le \pi/2$

3 inequivalent classes of vacua, all CP-preserving:

(i)
$$r_{\Delta} = 0$$

(ii) $r_{\Delta} \neq 0, 0 < \theta_{\Delta} < \pi/2, \theta_{A,B} = 0$
(iii) $r_{\Delta} \neq 0, 0 < \theta_{\Delta} < \pi/2, \theta_{A,B} = \pi/2$
 $\phi_A = \phi_B = 0.$ (simplicity)
 $U(1)_D \xrightarrow{} D_A(\hat{z}, \phi) \times D_B(\hat{z}, \phi$

$$Z_D = \cos \theta_D W_A^z + \sin \theta_D W_B^z \qquad MZ_D = \sqrt{2} \partial_{\Phi} e_D \csc(2\theta_D)$$
$$A_D = -\sin \theta_D W_A^z + \cos \theta_D W_{B^{\pm}}^z \qquad m_{A_D} = \frac{1}{\sqrt{2}} r_\Delta \sin 2\theta_D M_{Z_D}$$
$$W_{l,h} \quad \text{admixtures of} \quad W_{A,B}^{\pm} \qquad M_{W_l} = \sin \theta_{lh} M_{Z_D} \qquad M_{W_h} = \cos \theta_{lh} M_{Z_D}$$
$$\cos 2\theta_{lh} = \cos 2\theta_D \sqrt{1 + \sin^2 \theta_\Phi} \tan^2 \theta_D$$

	Gauge Bosons	Mass	Z'_2	Q_D
	Z_D	$M_{Z_D} \sim { m TeV}$	+1	0
	W_l^{\pm}	$M_{W_l} \sim { m TeV}$	-1	± 1
	W_h^{\pm}	$M_{W_h} \sim { m TeV}$	-1	<u>±</u> 1
dark photon 🛛 🗕 🛶	A_D	$m_{A_D} \sim { m GeV}$	+1	*

Scalar masses:

dark Higgs

8 degrees of freedom: 6 real scalars h_{1-6} 1 complex scalar h^{\pm}

Scalars	Mass	Z'_2	Q_D
h_1, h_2, h_4	$M_{h1,h2,h4} \sim { m TeV}$	+1	0
h^{\pm}	$M_h^{\pm} \sim \mathrm{TeV}$	+1	± 1
h_5 , h_6	$M_{h5,h6} \sim { m TeV}$	-1	0
h_3	$m_{h3} \sim { m GeV}$	+1	*

 $M_{h\pm} \text{ input parameter} \qquad M_{h_{1,2,4}} = r_{1,2,4}M_{h\pm} \qquad M_{h_5} = \cos\theta_M M_{h\pm} \qquad M_{h_6} = \sin\theta_M M_{h\pm}$ $m_{h_3} = r_{\Delta}r_3 M_{h\pm} \qquad |c_{2\theta_M}| > |c_{2\theta_\Delta}| \qquad r_i \sim O(1)$ $h_D \equiv h_3 \approx \cos\theta_{\Delta} (\Delta_B^x - r_{\Delta}v_{\Phi}\cos\theta_{\Delta}) + \sin\theta_{\Delta} (\Delta_A^x - r_{\Delta}v_{\Phi}\sin\theta_{\Delta})$

positivity of scalar mass-squares ensures (iii) is a relative minimum

Fermion masses: (second and third SM generations + heavy states)

$$\mathcal{L}_{Y} = y_{H} \left[\operatorname{Tr}(\overline{\Psi_{L}} H \Psi_{R}) + \text{h.c.} \right] + y_{HV} \left[\operatorname{Tr}(\overline{V_{L}} H V_{R}) + \text{h.c.} \right] + y_{HS} \left[\operatorname{Tr}(\overline{S_{L}} H S_{R}) + \text{h.c.} \right] \\ + y_{P} \left[\operatorname{Tr}(\overline{\Psi_{L}} \Phi V_{R}) + \text{h.c.} \right] + \tilde{y}_{P} \left[\operatorname{Tr}\left(\overline{\Psi_{L}} \tilde{\Phi} V_{R}\right) + \text{h.c.} \right] + y_{P'} \left[\operatorname{Tr}(\overline{V_{L}} \Phi^{\dagger} \Psi_{R}) + \text{h.c.} \right] \\ + \tilde{y}_{P}' \left[\operatorname{Tr}\left(\overline{V_{L}} \tilde{\Phi}^{\dagger} \Psi_{R}\right) + \text{h.c.} \right] + y_{SE} \left[\operatorname{Tr}(\overline{V_{L}} S_{R} \Delta_{B}) + \text{h.c.} \right] + y_{SL} \left[\operatorname{Tr}(\overline{S_{L}} V_{R} \Delta_{B}) + \text{h.c.} \right]$$

Fields	$SU(2)_L \times U(1)_Y$	$SU(2)_A$	$SU(2)_B$	Z ₂
Ψ_L , Ψ_R	$\left(2, -\frac{1}{2}\right), (1, -1)$	2	2	+1
V_L , V_R	$(1, -1), (2, -\frac{1}{2})$	1	3	+1
S_L, S_R	$\left(2, -\frac{1}{2}\right), (1, -1)$	1	1	-1

 $y_P = y_L \cos \theta_L \quad \tilde{y}_P = y_L \sin \theta_L$ $y'_P = y_E \cos \theta_E \quad \tilde{y}'_P = y_E \sin \theta_E$

$$M_L^+ = v_{\Phi} y_L \cos(\theta_L - \theta_{\Phi})$$

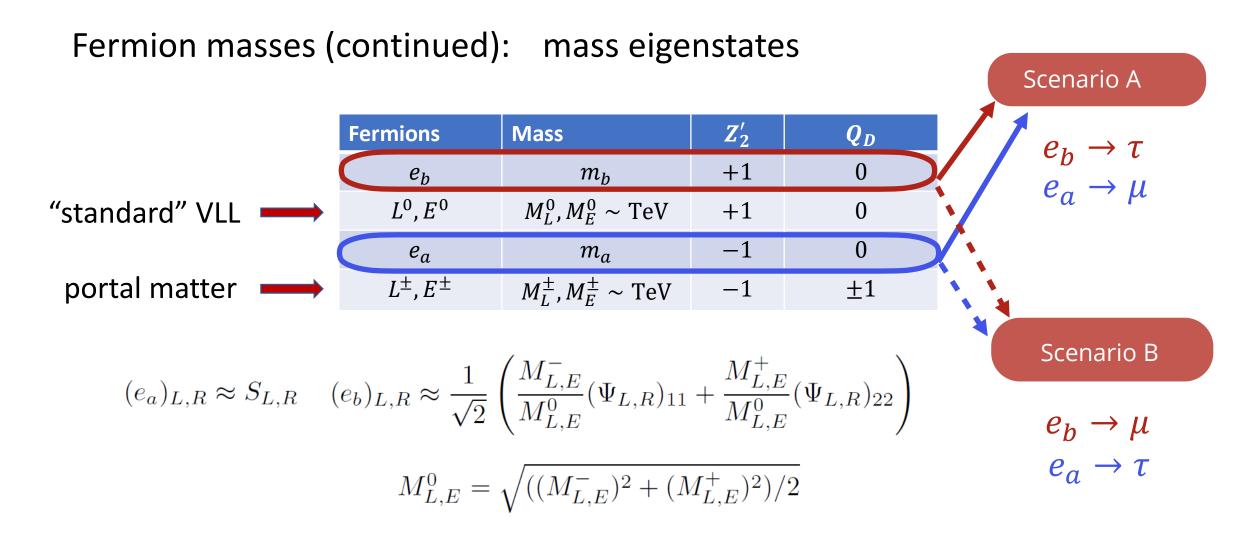
$$M_E^+ = v_{\Phi} y_E \cos(\theta_E - \theta_{\Phi})$$

$$M_L^- = v_{\Phi} y_L \sin(\theta_L + \theta_{\Phi})$$

$$M_E^- = v_{\Phi} y_E |\sin(\theta_E + \theta_{\Phi})|$$

basis choice: $y_{L,E,SL,SE,HS} > 0$ $c_{\theta_L - \theta_{\Phi}}, c_{\theta_E - \theta_{\Phi}}, s_{\theta_L + \theta_{\Phi}} > 0$ $y_H, y_{HV}, s_{\theta_E + \theta_{\Phi}}$ may be positive or negative (all couplings assumed to be real)

Fermion masses (continued): block diagonal form



Two embeddings: whether muon has $Z'_2 = -1$ (Scenario A)

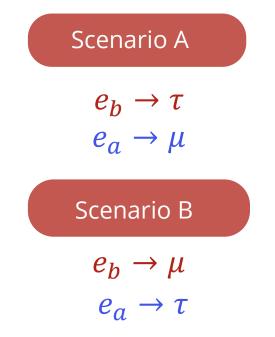
or $Z'_2 = +1$ (Scenario B)

Muon g-2 in our lepton flavor PM model

Now the chirality-flipping mass terms are

$$m_a \approx \frac{y_{HS}v}{\sqrt{2}}$$
 $m_b \approx O(1)\left(\frac{y_Hv}{\sqrt{2}}\right)$ $m_{HV} = \frac{y_{HV}v}{\sqrt{2}}$

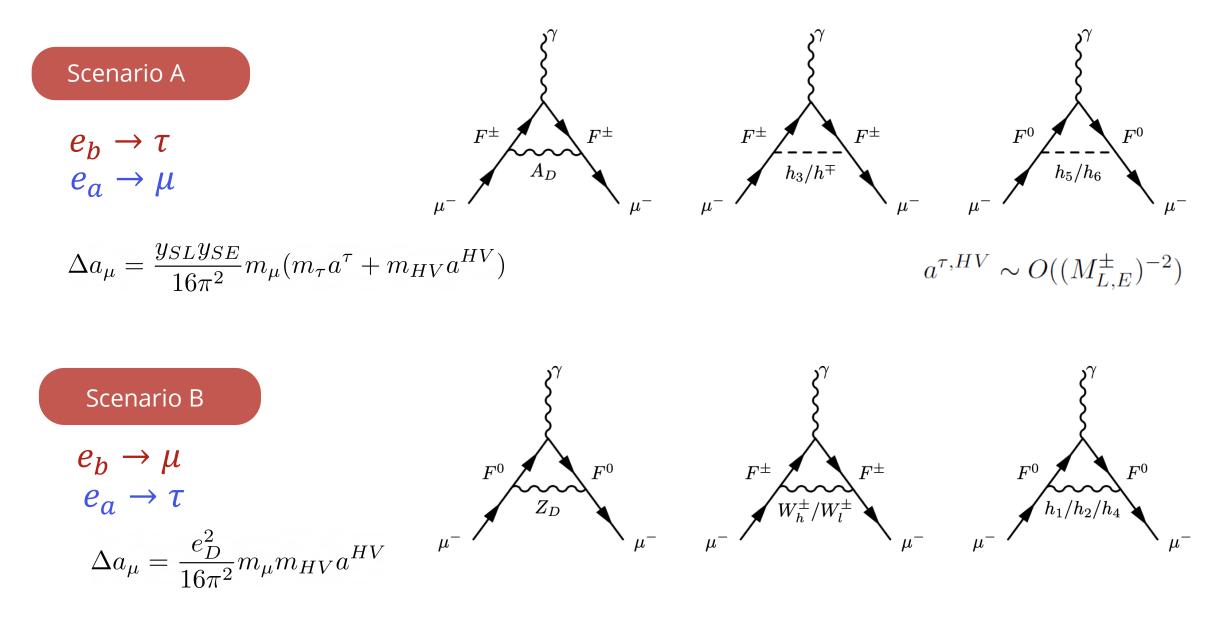
details depend on assignment of $\mu, \tau \implies$



resembles minimal workable PM model, with additional contributions (additional heavy scalars)

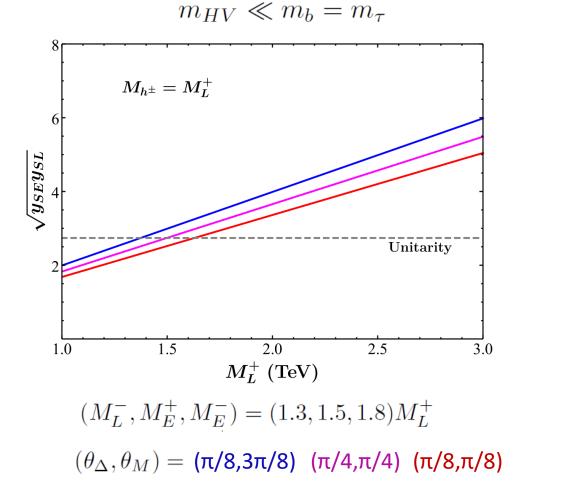
includes terms with heavy gauge bosons and heavy scalars (and thus some sensitivity to the DM model parameters)

Dominant (chirally-enhanced) contributions:

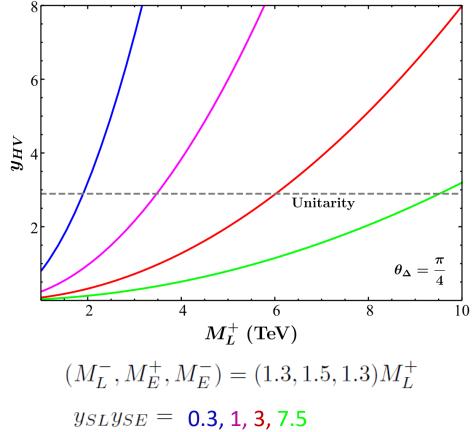


$M_{h^{\pm}}, m_{HV}, M_{L,E}^{\pm}, y_{SL,SE}, \theta_{\Delta}, \theta_{M}$

Scenario A



 $m_{HV} \gg m_b = m_{\tau}$



can easily accommodate Δa_{μ}

Scenario B

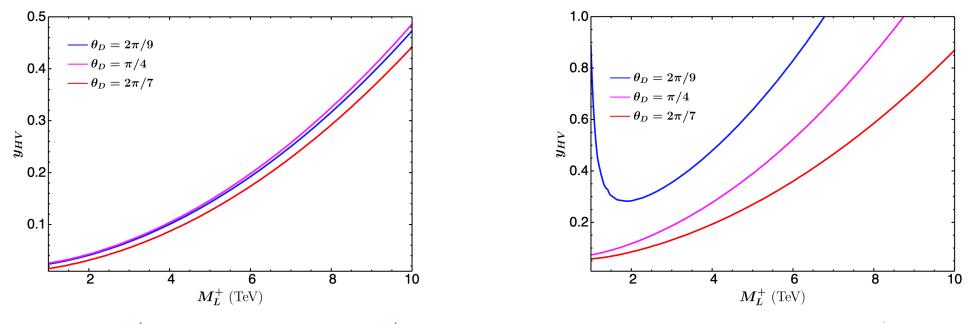
 $M_{h\pm}, m_{HV}, M_{Z_D}, M_{L,E}^{\pm}, M_{h_{1,2,4}}, \lambda_1, e_D, \theta_D, \theta_{lh}$ $M_{h_2} < \sqrt{2\lambda_1} e_D^{-1} \sin 2\theta_{lh} M_{Z_D} < M_{h_1}$

 $\sin\left(\theta_E + \theta_\Phi\right) > 0$

 $\sin\left(\theta_E + \theta_\Phi\right) < 0$

(constructive interference)

(destructive interference)



 $(M_L^-, M_E^+, M_E^-) = (1.3, 1.5, 1.8)M_L^+ \quad (M_{h_1}, M_{h_2}, M_{h_4}) = (1.2, 1.4, 1) \text{ TeV} \quad M_{Z_D} = 0.7 \text{ TeV}$

Again, Δa_{μ} can easily be accommodated

Collider Phenomenology

similar rates for both scenarios A and B

lightest heavy fermion state predicted to be PM ($U(1)_D$ charged)

 $M_{L,E}^{\pm} \le M_{L,E}^{0} \le M_{L,E}^{\mp}$

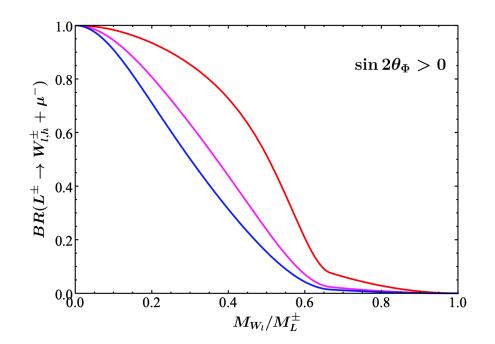
Scenario A

 $L^{\pm}, E^{\pm} \rightarrow \mu + A_D$ $L^{\pm}, E^{\pm} \rightarrow \mu + h_D$ expect usual bounds: $M_E^{\pm} \ge 895 \text{ GeV}, M_L^{\pm} \ge 1050 \text{ GeV}$ unless new decay channels via heavy scalars and gauge bosons again, can do better at a (multi-TeV) muon collider: probe PM masses up to $\sqrt{s}/2$ Scenario A

(continued)

Example: PM decays to heavy gauge bosons

 $L^{\pm} \rightarrow \mu + W_{l,h}^{\pm}$ $M_{W_h} = 1.5 M_{W_l} \quad M_L^- = 1.3 M_L^+$ $y_{SL} = 1 \quad \theta_{\Delta} = (\pi/8, \pi/4, 3\pi/8)$



Scenario B

PM decays to tau leptons rather than muons

correspondingly weaker limits on PM masses

VLL direct production ($U(1)_D$ neutral heavy fermions)

Scenario A

$$\Gamma(E^{0} \to \tau, \mu + h, Z, W) \sim M_{E}^{0} \times O\left(\frac{m_{\tau,\mu}^{2}}{v^{2}}\right)$$

$$\Gamma(E^{0} \to L^{0} + h, Z, W) \sim M_{E}^{0} \times O\left(\frac{m_{\tau,\mu}^{2}}{v^{2}}, \frac{m_{HV}^{2}}{v^{2}}\right)$$

standard VLL bounds may be weakened if heavy gauge bosons and scalars are kinematically accessible for 2-body decays if so, distinctive signature: **2** EW gauge bosons emitted instead of 1

can constrain m_{HV} via decays of heavy VLL to lighter VLL

Monophoton search (muon collider)

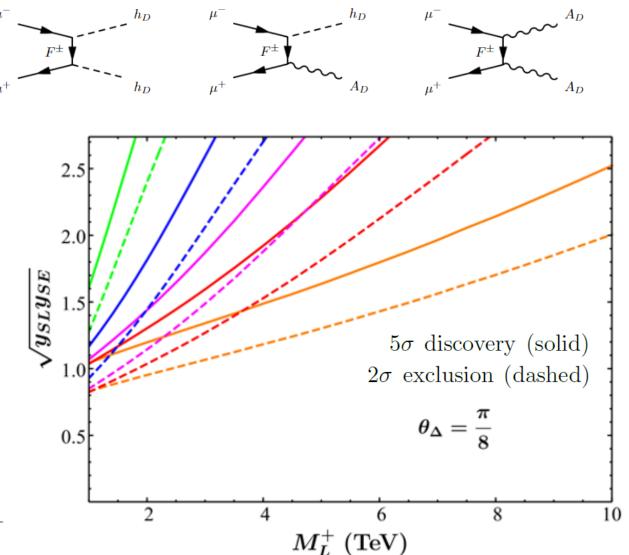
Pair production of dark photons, dark Higgs: constraints on $\sqrt{y_{SL}y_{SE}}$

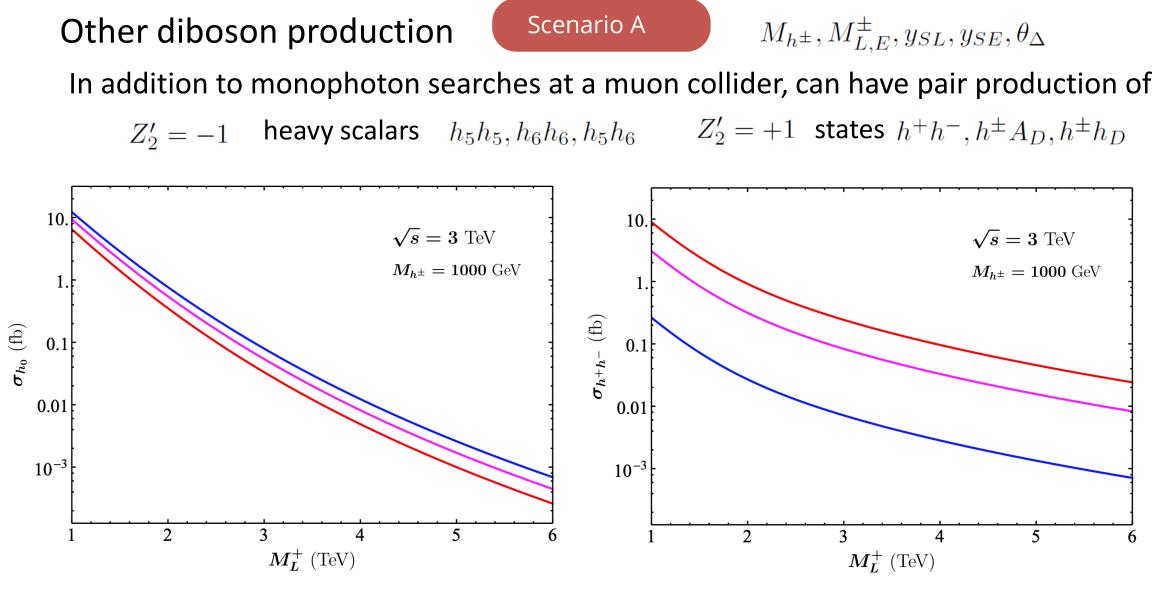
Scenario A

 $\sqrt{s} = 3, 6, 10, 14, 30 \, {\rm TeV}$

upper limit on Yukawas: perturbative unitarity

 $(M^-_L, M^+_E, M^-_E) = (1.3, 1.5, 1.8) M^+_L$





 $(M_L^-, M_E^+, M_E^-) = (1.3, 1.5, 1.8) M_L^+ \qquad \theta_\Delta = (\pi/8, \pi/4, 3\pi/8)$

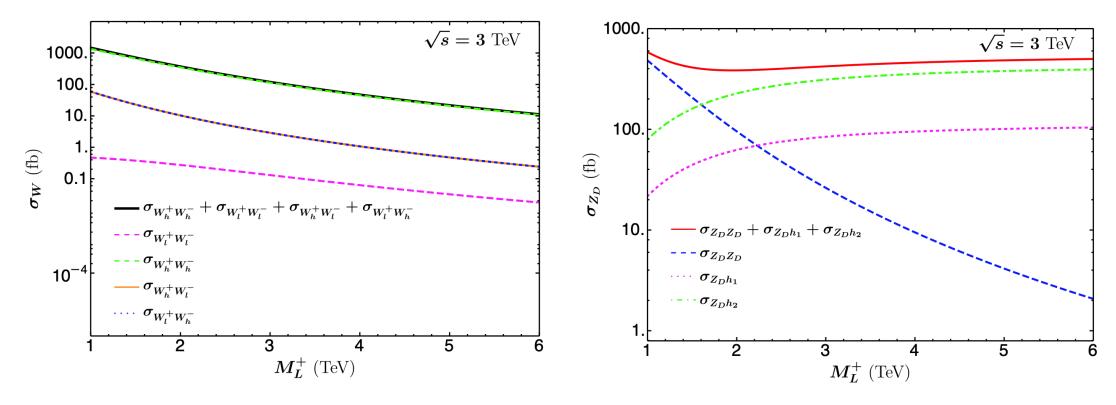
Diboson production

Scenario B

 $M_{h^{\pm}}, M_{Z_D}, M_{L,E}^{\pm}, M_{h_{1,2,4}}, e_D, \theta_D, \theta_{lh}$

pair production of heavy gauge bosons and scalars at a muon collider

 $h_{1,2}h_{1,2}$ h_4h_4 Z_DZ_D $Z_Dh_{1,2}$ $W_{h,l}^{\pm}W_{h,l}^{\mp}$



 $(M_L^-, M_E^+, M_E^-) = (1.3, 1.5, 1.8) M_L^+ \qquad s_{lh} M_{Z_D} = 0.75 \text{ TeV} \quad \theta_D = \pi/4$

Precision constraints

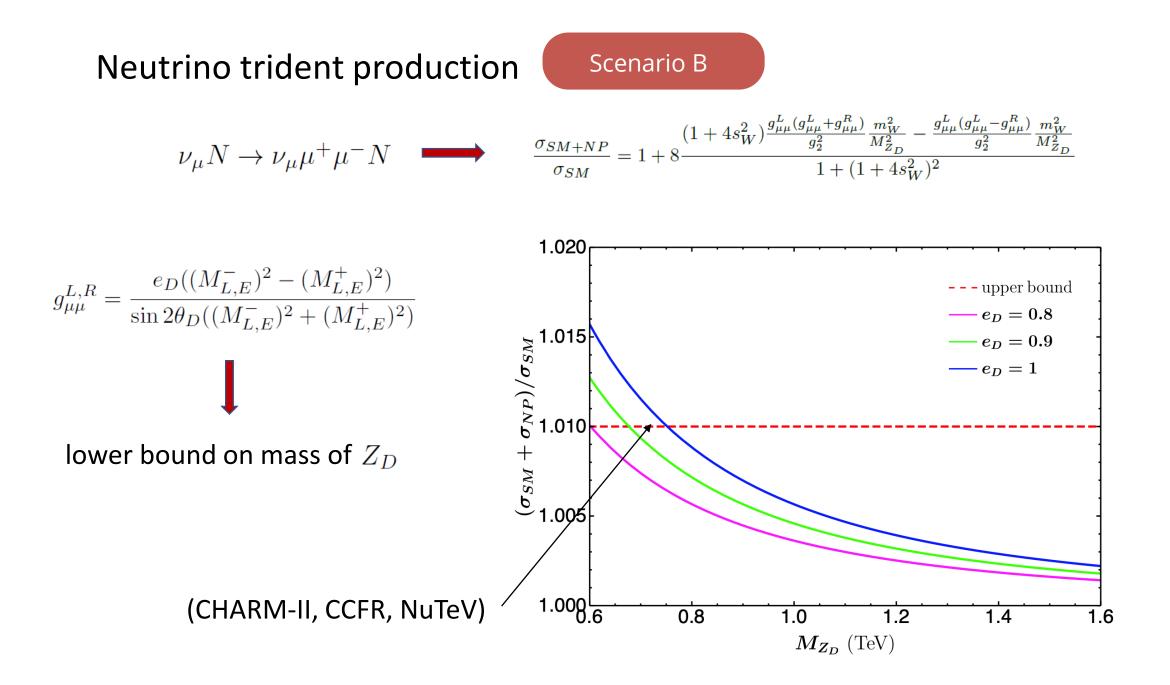
vectorlike new fermions — mild precision constraints

kinetic mixing of SM Z with Z_D, A_D

$$\epsilon_{Z-A_D} = \frac{e_D e}{6\pi^2} \frac{s_w}{c_w} \log\left(\frac{M_L^+ M_E^+}{M_L^- M_E^-}\right)$$
 (leading order)

$$\epsilon_{Z-Z_D} = \frac{e_D e}{12\pi^2 \sin(2\theta_D)} \frac{s_w}{c_w} \left[\frac{M_L^{+2} - M_L^{-2}}{M_L^{+2} + M_L^{-2}} \left(\frac{5}{6} + \log \frac{M_L^0}{m_Z} \right) + (1 - 2\cos(2\theta_D)) \log \frac{M_L^+}{M_L^-} + (L \to E) \right]$$
$$\longrightarrow M_{Z_D} - m_Z \gtrsim 10 \text{ GeV}$$
$$Z_D \text{ couples at leading order to taus or muons}$$
Scenario B

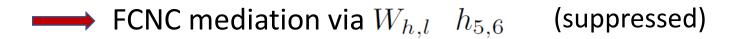
expect stronger constraints in Scenario B



Lepton flavor violation

(partial) lepton flavor symmetry (no theory yet of small Yukawa couplings)

 Z'_2 isolates muon and tau lepton flavors (electron is taken to be \mathcal{G}_D singlet)



charged LFV constraints easily satisfied

Extend to include neutrino masses -

will require violation of the preserved Z'_2

➡ work in progress

Summary and conclusions

Portal matter – useful model-building framework for physics beyond the SM

Minimal workable portal matter model that can accommodate muon *g*-2

Extended theory based on non-Abelian dark group $SU(2)_A \times SU(2)_B \times Z_2$ can also accommodate muon *g-2* rich phenomenology, well-suited for muon collider probes intriguing setting for exploration of lepton family symmetries

Parameters of the model

- $(e_D, \lambda_1, M_{Z_D}, M_{h_{1,2,4}}, M_{h^{\pm}}, \theta_M, \theta_D, \theta_{\Delta}, \theta_{lh})$
- $(M_L^{\pm}, M_E^{\pm}, |y_{HV}|, |y_H|, |y_{SL}|, |y_{SE}|)$
- $\operatorname{sign}(y_{HV}, y_H, \sin(\theta_E + \theta_\Phi), \sin(2\theta_\Phi))$
- Dark photon and dark Higgs masses (sub-GeV)
- Other scalar quartics either expressible in terms of other parameters or only enter four-scalar interactions not of interest here

Diboson (monophoton and other) details

Scenario A

$$N_{SD} = \frac{\sqrt{\mathcal{L}}\cos^4\theta_{\Delta}}{\sqrt{\sigma_{SM}}} (y_{SL}^4 \sigma^L + y_{SE}^4 \sigma^E) \qquad \sigma^{L,E} \equiv \sum_{XY} \sigma_{XY}^{L,E} \qquad XY = h_D h_D, A_D h_D, A_D A_D$$

$$N_{SD} > 2y_{SL}^2 y_{SE}^2 \cos^4 \theta_\Delta \sqrt{\mathcal{L}} \sqrt{\frac{\sigma^L \sigma^E}{\sigma_{SM}}}$$

\sqrt{s} (TeV)	$\mathcal{L} (ab^{-1})$
3	1
6	4
10	10
14	20
30	90

Hypothetical muon collider parameters

Cuts: $E_{\gamma} > 50 \text{ GeV}$ $m_{\text{miss}}^2 \equiv (p_{\mu^+} + p_{\mu^-} - p_{\gamma})^2 > (200 \text{ GeV})^2 |\eta_{\gamma}| < 2.5$

Scenario B