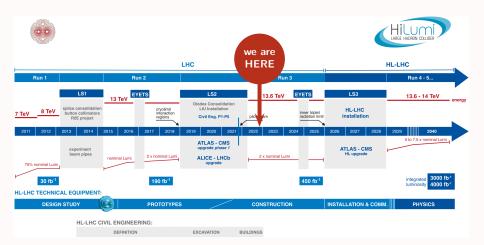
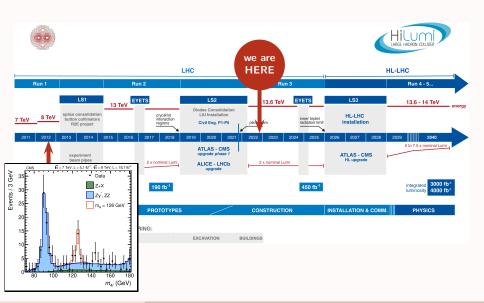
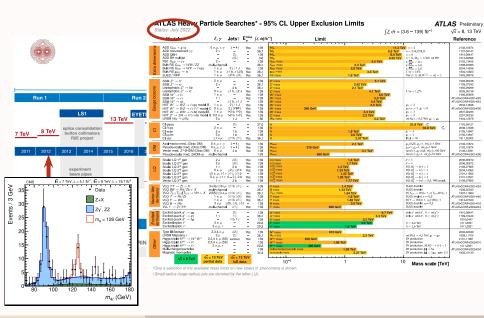
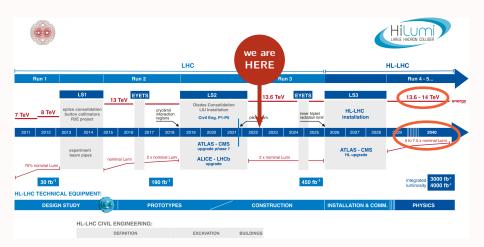
# The hunt for non-resonant signals of new physics at the LHC


#### Ilaria Brivio


University of Zurich & Università di Bologna



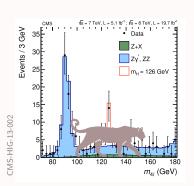


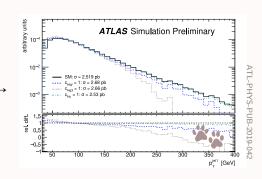




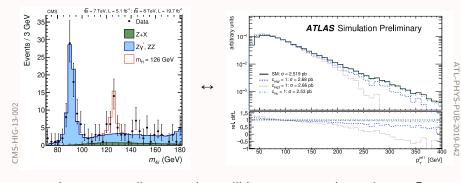






#### Targeting non-resonant signals of new physics


no clear indications of specific BSM scenarios




strong reduction of statistical uncertainties

new strategies for NP searches targeting **non-resonant** signals





#### Targeting non-resonant signals of new physics



- ▶ complementary to direct searches. will become more relevant in next Runs
- key idea: implement a comprehensive, agnostic program



- ▶ Effective Field Theories are a natural framework
  - → allow a (model-independent) NP interpretation of non-resonant effects
  - $\rightarrow$  well-defined mapping between theories in UV and at EW scale
  - ightarrow proper QFTs: renormalizable order-by-order, syst. improvable in loops
  - → allow combination with non-LHC measurements. "global likelihood"

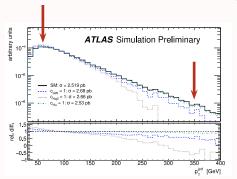
#### **SMEFT**

## Standard Model Effective Field Theory: The EFT constructed with **Standard Model** fields & symmetries

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

$$\mathcal{L}_d = \sum_i C_i \mathcal{O}_i^{(d)} \qquad \qquad C_i = \text{Wilson coefficients}$$

$$\mathcal{O}_i^{(d)} = \text{gauge-invariant operators}$$


SMEFT describes any nearly-decoupled ( $\Lambda \gg \nu$ ) BSM physics with "good" analyticity/geometry properties in the scalar sector

- default candidate for LHC/global program
- underwent enormous developments in past decade

## Challenges for the bottom-up SMEFT program

**1.** being **sensitive** to indirect BSM effects  $\rightarrow$  needs uncertainty reduction

in bulk 
$$\sim \frac{v^2}{\Lambda^2} = \frac{v^2 g_{UV}}{M^2}$$
.  $g_{UV} \simeq 1$ ,  $M \simeq 2 \, {\rm TeV} \to 1.5\%$  on tails  $\sim \frac{E^2}{\Lambda^2} \simeq \frac{E^2 g_{UV}}{M^2}$   $E \simeq 1 \, {\rm TeV}$ ,  $M \simeq 3 \, {\rm TeV} \to 10\%$ 



## Challenges for the bottom-up SMEFT program

**1.** being **sensitive** to indirect BSM effects  $\rightarrow$  needs uncertainty reduction

in bulk 
$$\sim \frac{v^2}{\Lambda^2} = \frac{v^2 g_{UV}}{M^2}$$
.  $g_{UV} \simeq 1$ ,  $M \simeq 2 \, {\rm TeV} \to 1.5\%$   
on tails  $\sim \frac{E^2}{\Lambda^2} \simeq \frac{E^2 g_{UV}}{M^2}$   $E \simeq 1 \, {\rm TeV}$ ,  $M \simeq 3 \, {\rm TeV} \to 10\%$ 

- 2. making sure that, if we observe one, we interpret it correctly. needs:
  - retaining all relevant contributions: all operators, NLO corrections...
    - $\downarrow$
    - handling many parameters in predictions and fits
    - understanding the theory structure
  - correct understanding of uncertainties and correlations
  - systematic mapping to BSM models

#### The development of SMEFT - quick wrap up

#### theory

- bases up to d = 9
- Hilbert series
- on-shell methods
- positivity
- unitarity bounds
- geometry

#### fits

- fitting technology/tools
- information geometry PCA, Fisher info. . .
- strategies to extract differential info

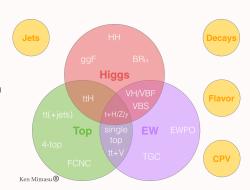
#### predictions

- RGEs for d = 6 and d = 8 (partial)
- predictions to NLO EW and NLO QCD
- ▶ first 2-loop results
- automation of RGE
- Monte Carlo at LO and NLO QCD
- predictions and studies for Higgs, top, diboson, VBS, Drell-Yan, dijet...
- SMEFT in PDFs

#### map to other theories

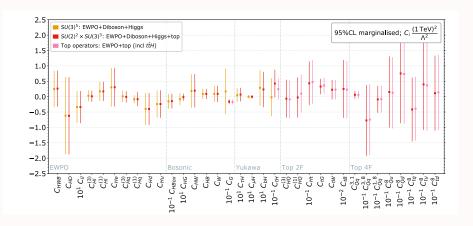
- matching to 1-loop with functional methods
- automation of matching to models
- matching to LEFT
- ▶ analysis of LHC + lower-E results

#### Combine, combine, combine


2499 parameters in the most general case

can be reduced

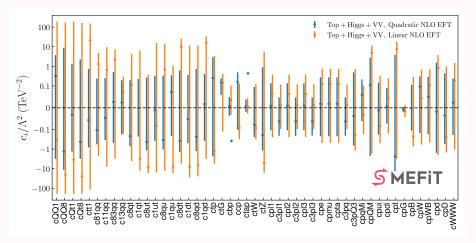
- assuming symmetries: flavor, CP
- taking advantage of kinematic suppressions


beyond this **combining** different measurements is necessary

- ▶ to access as many operators as we can
- to avoid bias in interpretation i.e. miss a potential deviation or assign it to the wrong op.



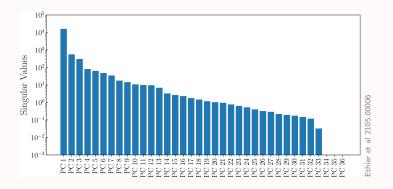
#### State-of-the-art SMEFT fits: H + EW + Top


Ellis, Madigan, Mimasu, Sanz, You 2012.02779

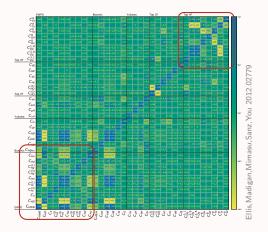


34 param,  $U(3)^5$  flavor sym, linear, LO + ggH

#### State-of-the-art SMEFT fits: H + EW + Top


Ethier, Maltoni, Mantani, Nocera, Rojo 2105.00006




50 param (36 indep.),  $U(2)^2 \times U(3) \times U(1)^3$  flavor sym, linear+quadratic, NLO QCD

► many **dimensions**: state-of-the-art 30–35 LHC target (EW+H+top) ~ 50

- ► many **dimensions**: state-of-the-art 30–35 LHC target (EW+H+top) ~ 50
- ▶ large **hierarchies** between constraints (easily 2 − 5 orders of magnitude)



- ► many **dimensions**: state-of-the-art 30–35 LHC target (EW+H+top) ~ 50
- ▶ large **hierarchies** between constraints (easily 2-5 orders of magnitude)
- ▶ weakly broken flat directions → highly correlated sub-spaces



- ► many **dimensions**: state-of-the-art 30–35 LHC target (EW+H+top) ~ 50
- ▶ large **hierarchies** between constraints (easily 2 − 5 orders of magnitude)
- ▶ weakly broken flat directions → highly correlated sub-spaces
- high sensitivity to uncertainties size and correlations

- ► many **dimensions**: state-of-the-art 30–35 LHC target (EW+H+top) ~ 50
- ▶ large **hierarchies** between constraints (easily 2 − 5 orders of magnitude)
- ▶ weakly broken flat directions → highly correlated sub-spaces
- high sensitivity to uncertainties size and correlations

#### Results derived in different setups to understand the structure of the fit space

- ▶ linear ↔ linear + quadratics
- ► LO ↔ NLO
- ▶ individual ↔ marginalised/profiled
- comparisons between different fitting methods
- Fisher information
- Principal Component Analysis
- sub-fits to check impact of individual datasets

## What's missing for a successful SMEFT program?

[personal/pragmatic point of view, not attempting to make a complete list.]

A = for being sensitive

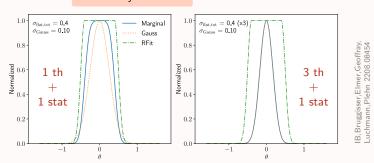
- $\mathsf{B} = \mathsf{for} \; \mathsf{interpreting} \; \mathsf{deviations} \; \mathsf{correctly}$
- 0. (experimentally established anomalies)
- 1. A reduction of uncertainties on SM predictions + systematics
- 2. A B streamline treatment & reduction of EFT-born uncertainties
- 3. B correct treatment of correlations  $\rightarrow$  involvement of experiments

Bißmann, Erdmann, Grunwald, Hiller, Kröninger 1912.06090

4. B including SMEFT beyond ME: PDF, PS, acceptances

Carrazza et al 1905.05215, Greljo et al. 2104.02723, Iranipour,Ubiali 2201.07240 Goldouzian et al 2012.06872, Haisch et al 2204.00663, ATL-PHYS-PUB-2022-037

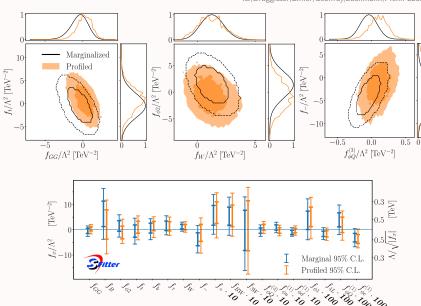
- 5. B more refined process treatment: exploit differential info, target  $\mathcal{LP}$ , flavor. . .
- 6. B handling & understanding ~ 50-dimensional likelihoods


## Marginalisation

→ already used in HEPfit, SMEFiT, EFTfitter...

deBlas et al 1905.03764, Ethier et al 2105.00006, Castro et al 1605.05585

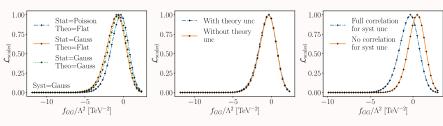
#### compared to Profiling: more convenient for large-dimensional fits


- not the same interpretation! but results should be close to each other when many measurements and uncertainties are included (central limit thm)
- applied on nuisance par. to combine uncertainties on individual measurements
   + on SMEFT par. to obtain 1D or 2D likelihoods
- main difference: uncertainty treatment



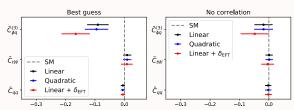
▶ faster convergence to Gaussian shape ⇒ way less computationally expensive

#### Marginalisation - 18D fits


IB, Bruggisser, Elmer, Geoffray, Luchmann, Plehn 2208.08454



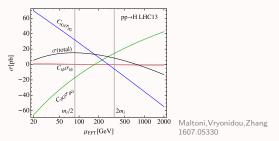
#### Marginalisation: the role of correlations


when marginalising over (many) nuisance parameters, it is not so relevant whether they are originally modeled as flat, poisson or Gauss

#### the largest difference is seen changing correlations



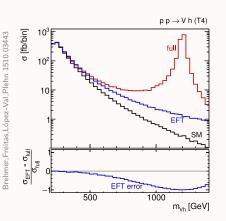
#### observed also in

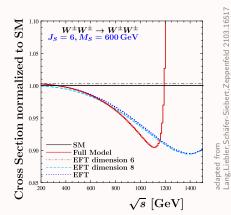

Bißmann, Erdmann, Grunwald, Hiller, Kröninger 1912.06090



#### Theory uncertainties on EFT predictions

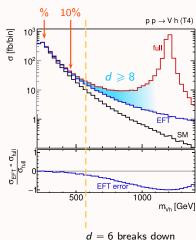
$$\sigma_{SMEFT} = \sigma_{SM} \left[ 1 + a_i C_i + b_{ij} C_i C_j + \dots \right]$$
  $a_i = a_i^0 \pm \Delta a_i$ 


- uncertainties from dependence on SM quantities (eg. input schemes, scales), from MC simulations . . .
- uncertainties due to running & mixing coefficients (EFT scale)




- uncertainties due to missing higher orders in loops (QCD/EW)
- uncertainties due to missing higher EFT orders / unknown cutoff size

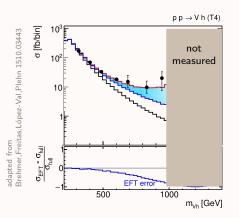
#### Impact of higher order operators


#### EFT obtained from matching to full model





#### Impact of higher order operators


EFT obtained from matching to full model



adapted from Brehmer, Freitas, López-Val, Plehn 1510.03443

#### Impact of higher order operators

#### EFT obtained from matching to full model

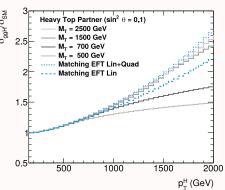


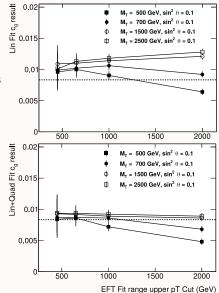
**top-down**:  $C_i$  fixed by matching  $\rightarrow$  EFT not valid in high-E region

**bottom-up**: fit  $C_i$  to data tends to make EFT match full result  $\rightarrow$  find wrong values of  $C_i$ 

how to keep this into account?

sliding upper cut: Contino,Falkowski,Goertz, Grojean,Riva 1604.06444 uncertainty band: Trott et al 1508.05060,2007.00565,2106.13794 Hays,Martin,Sanz,Setford 1808.00442 Shepherd et al 1812.07575,1907.13160 compute at  $O(\Lambda^{-4})$ Boughezal,Mereghetti,Petriello 2106.05337 Asteriadis,Dawson,Fontes,Homiller,Sullivan 2110.06929,2205.01561,2212.03258

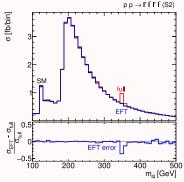

## Benchmarking these proposals: sliding upper cut


Battaglia, Grazzini, Spira, Wiesemann 2109.02987

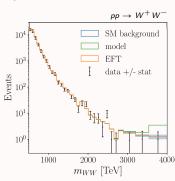
 $p_T^H$  from heavy top partner

fit result  $\stackrel{?}{=}$  value from matching

 $\rightarrow$  check impact of upp. cut + quadratics



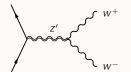




#### safe scenarios ↔ no energy growth ↔ small effects

typical cases where d = 6 works well across the whole visible spectrum:

- ▶ observables w/o E dependence  $(1 \rightarrow 2 \text{ decays})$
- BSM scenarios with very narrow and/or heavy states

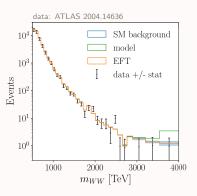


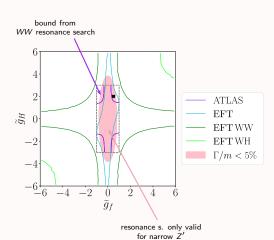




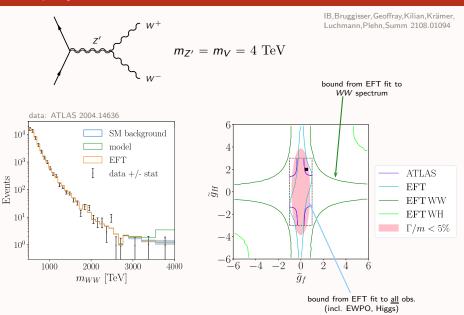

Brivio, Bruggisser, Geoffray, Kilian, Krämer, Luchmann, Plehn, Summ 2108.01094

price to pay:  $\frac{\%}{\%}$  effects only  $\rightarrow$  most sensitivity from <u>lowest error</u> region ( $\sim$  bulk)

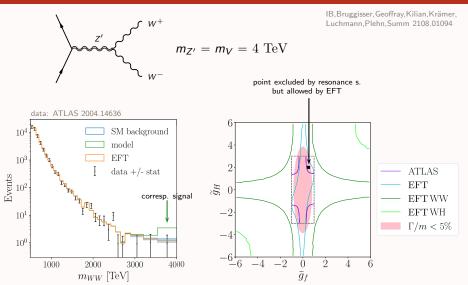

#### Interplay with direct searches




Luchmann,Plehn,Summ 2108.01094


IB, Bruggisser, Geoffray, Kilian, Krämer,

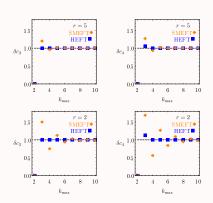
$$m_{Z'}=m_V=4~{\rm TeV}$$






#### Interplay with direct searches




## Interplay with direct searches



#### **SMEFT or HEFT?**

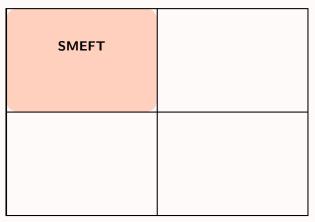
a component of the d=6 vs model discrepancy can be removed by reabsorbing higher powers of v within d=6 coefficients instead of leaving them to  $d\geqslant 8$ 

 $\rightarrow$  u d h (T1) 5 [fb/bin] 30 20 10 150 p<sub>T in</sub> [GeV] conceptually similar to using **HEFT** instead

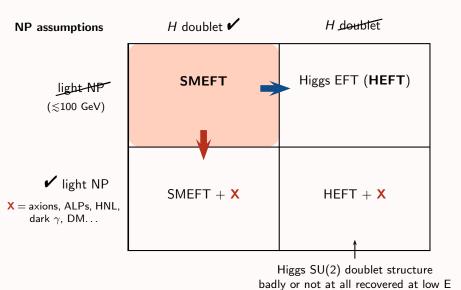


Brehmer, Freitas, López-Val, Plehn 1510.03443

which EFT is most convenient?


Cohen, Craig, Lu, Sutherland 2008.08597

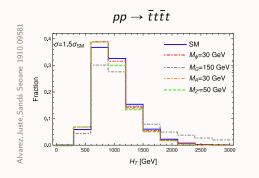
## Non-resonant signals beyond SMEFT

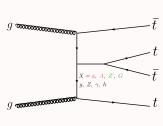



H doublet  $\checkmark$  = Higgs SU(2) doublet structure recovered

light NP (≲100 GeV)




#### Non-resonant signals beyond SMEFT




#### Non-SMEFT non-resonant signals: light NP

Non-resonant signals can also be induced by new light states

- $\rightarrow$  off-shell, in the limit  $\sqrt{s} \gg m \rightarrow$  typically happens for heavy final states
- → most relevant if they have momentum-enhanced couplings (EFT)





graviton G has d=5 coupling  $(G_{\mu\nu}\bar{t}_R\gamma^{\mu}D^{\nu}t_R)$ , all others are d=4 top-philic  $\rightarrow$  not ruled out by direct searches

## An interesting case: Axion-Like Particles

**ALP** = pseudo-Goldstone boson from breaking of BSM symmetry

#### Examples:

Peccei-Quinn symm. → QCD axion Lepton number → Majoron

Flavor symm.  $\rightarrow$  Flavon

Peccei, Quinn 1977, Weinberg 1978 Wilczek 1978 Gelmini, Roncadelli 1981 Langacker, Peccei, Yanagida 1986 Wilczek 1982

#### **Fundamental properties**

- neutral, pseudo-scalar: spin 0, odd parity
- ▶ approx. shift symmetry  $a(x) \rightarrow a(x) + c$   $\Rightarrow m_a$  naturally small

#### Why so interesting?

- $\blacktriangleright$  naturally the lightest remnant of heavy NP sectors  $\rightarrow$  easiest to discover
- ightharpoonup spontaneous symmetry breakings are **ubiquitous** in BSM ightharpoonup high relevance
- under certain conditions: good DM candidate

# **ALP Effective Field Theory**

- ▶ ALPs can be described in a **EFT** where heavy sector is integrated out
- ► SM fields + a & SM symmetries + ALP shift sym. (+ CP)
- ▶ Cutoff:  $f_a$  (ALP char. scale, reminiscent of  $f_\pi$ ). LO: dimension 5

CP even: Georgi, Kaplan, Randall PLB169B(1986)73

$$\begin{split} \mathcal{L}_{ALP} &= \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_{a}^{2}}{2} a^{2} \\ &+ C_{\tilde{B}} O_{\tilde{B}} + C_{\tilde{W}} O_{\tilde{W}} + C_{\tilde{G}} O_{\tilde{G}} \\ &+ C_{u} O_{u} + C_{d} O_{d} + C_{e} O_{e} + C_{Q} O_{Q} + C_{L} O_{L} \quad + \mathcal{O}(f_{a}^{-2}) \end{split}$$

$$\begin{split} O_{\tilde{B}} &= -\frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu} \qquad O_{\tilde{W}} = -\frac{a}{f_a} W_{\mu\nu}^I \tilde{W}^{I\mu\nu} \qquad O_{\tilde{G}} = -\frac{a}{f_a} G_{\mu\nu}^A \tilde{G}^{A\mu\nu} \\ O_{f,ij} &= \frac{\partial^\mu a}{f_a} \left( \bar{f}_i \, \gamma^\mu \, f_j \right) \qquad \to C_f : \quad N_g \times N_g \text{ symmetric matrices in flavor space} \end{split}$$

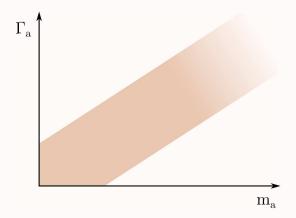
# Recent developments in ALP EFT

relatively simple EFT  $\rightarrow$  convenient theory playground recently borrowed some expertise from SMEFT

- discussion on basis completeness
- ► RGE evolution
- ► RGE mixing into SMEFT
- comprehensive 1-loop study, incl. finite parts
- unitarity constraints
- ▶ flavor-invariant parameterization of shift-breakings Bonnefoy, Grojean, Kley 2206.04182

Chala, Guedes, Ramos, Santiago 2012.09017 Bauer, Neubert, Renner, Schnubel, Thamm 2012.12272 Bonilla, IB, Gavela, Sanz 2107.11392

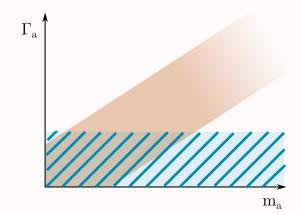
Galda.Neubert.Renner 2105.01078


Bonilla, IB, Gavela, Sanz 2107.11392

IB,Éboli,González-García 2106.05977

#### Why?

- tree-level access to **couplings to heavy SM particles** (W, Z, h, t)
- ▶ access to **heavy ALPs**  $(m_a \gtrsim 10s \text{ GeV})$


#### How?

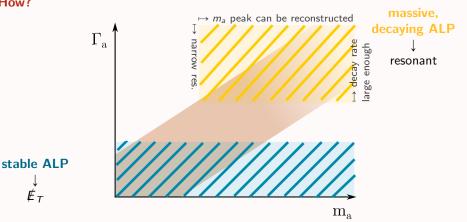


#### Why?

- tree-level access to **couplings to heavy SM particles** (W, Z, h, t)
- ▶ access to **heavy ALPs**  $(m_a \gtrsim 10s \text{ GeV})$

#### How?



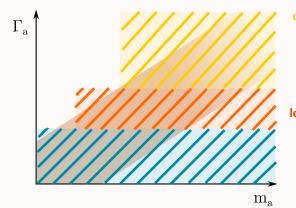

stable ALP

↓ ⊭<sub>T</sub>

#### Why?

- tree-level access to **couplings to heavy SM particles** (W, Z, h, t)
- ▶ access to **heavy ALPs**  $(m_a \gtrsim 10s \text{ GeV})$

#### How?




Ilaria Brivio (UZH & UniBo)

#### Why?

- tree-level access to **couplings to heavy SM particles** (W, Z, h, t)
- ▶ access to **heavy ALPs**  $(m_a \gtrsim 10s \text{ GeV})$

#### How?

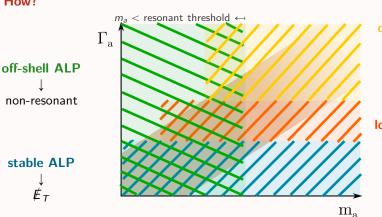


massive, decaying ALP

resonant

long-lived ALP

↓
displaced


vertices

stable ALP

#### Why?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- ▶ access to **heavy ALPs**  $(m_a \gtrsim 10s \text{ GeV})$

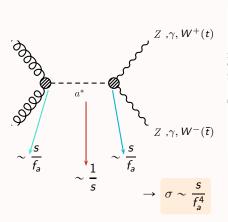
#### How?

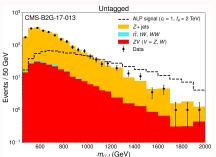


decaying ALP

resonant

long-lived ALP


displaced vertices


non-resonant

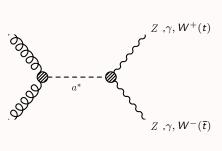
# Non-resonant ALP signals at LHC

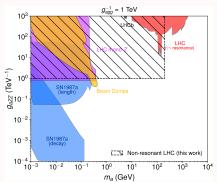
 $ZZ, \gamma\gamma, t\overline{t}$ : Gavela,No,Sanz,Troconiz 1905.12953, CMS PAS B2G-20-013 2111.13669  $WW, Z\gamma$ : Carrá,Goumarre,Gupta,Heim,Heinemann,Küchler,Meloni,Quilez,Yap 2106.10085

ALP off-shell for  $m_a \ll m_1 + m_2 \leqslant \sqrt{s}$  "too light to be resonant"






independent of  $m_a$ ,  $\Gamma_a$ 


## Non-resonant ALP signals at LHC

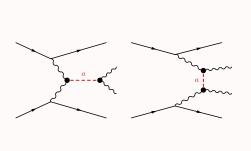
 $ZZ, \gamma\gamma, t\bar{t}$ : Gavela,No,Sanz,Troconiz 1905.12953, CMS PAS B2G-20-013 2111.13669  $WW, Z\gamma$ : Carrá,Goumarre,Gupta,Heim,Heinemann,Küchler,Meloni,Quilez,Yap 2106.10085

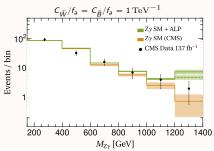
ALD off shall for my my l my C /c "too light

ALP off-shell for  $m_a \ll m_1 + m_2 \leqslant \sqrt{s}$  "too light to be resonant"





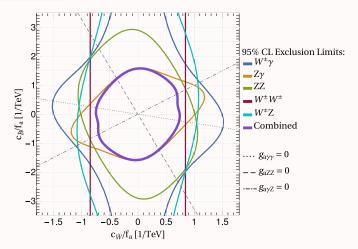

puts a constraint on  $(g_{aGG} \times g_{aVV})$  product for  $g_{aGG}$  not too small, competitive bounds on  $g_{aVV}$ 


### Non-resonant searches in VBS

Bonilla, IB, Machado-Rodríguez, Trocóniz 2202.03450

#### same principle, applied to Vector Boson Scattering

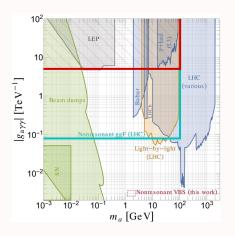
- ightarrow independent of  $g_{aGG}$  (if pure ALP signal dominates, adding  $C_{\tilde{G}}$  does not worsen bounds)
- $\rightarrow$  compare to actual analyses by CMS:  $W^{\pm}W^{\pm}, W^{\pm}Z, W^{\pm}\gamma, Z\gamma, ZZ$

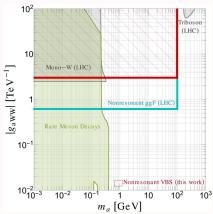





$$\begin{split} \sigma &= \sigma_{SM} + \sigma_{\text{int.}} / f_a^2 + \sigma_{ALP} / f_a^4 \\ \sigma_{\text{int.}} &= C_{\tilde{B}}^2 \, \sigma_{B2} + C_{\tilde{W}}^2 \, \sigma_{W2} + C_{\tilde{B}} \, C_{\tilde{W}} \, \sigma_{WB} \\ \sigma_{ALP} &= C_{\tilde{B}}^4 \, \sigma_{B4} + C_{\tilde{W}}^4 \, \sigma_{W4} + C_{\tilde{B}}^2 \, C_{\tilde{W}}^2 \, \sigma_{W2B2} + C_{\tilde{B}}^3 \, C_{\tilde{W}} \, \sigma_{B3W} + C_{\tilde{B}} \, C_{\tilde{W}}^3 \, \sigma_{BW3} \end{split}$$

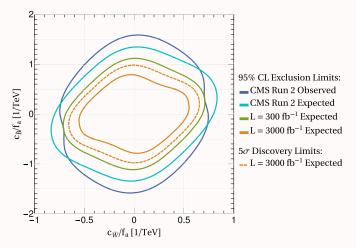
### Non-resonant searches in VBS: Run 2 results


gauge invariant param.  $\rightarrow$  all EW couplings simultaneously accounted for

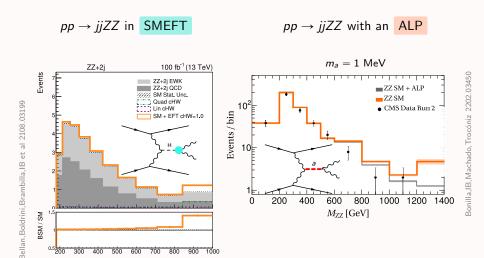



## Comparison with other constraints

- strongest bound on  $g_{aZZ}$ ,  $g_{aWW}$  for  $m_a \in [0.1, 100]$  GeV
- main values
- independent of  $C_{\tilde{G}}$
- ▶ independent of  $m_a$ ,  $\Gamma_a$  as long as < threshold


relevant to break flat directions






# Non-resonant searches in VBS: projections

HL-LHC: sensitivity improves  $\times 5-8$  on XS  $\rightarrow \times 1.5-1.7$  on  $C_i/f_a$ 



### **SMEFT vs ALPs in VBS**



 $m_{4l}$ 

# **Summary**

- Non-resonant signals are a main target for the LHC in the future runs
- SMEFT is the default choice for a global program
- Enormous improvements made, some (technical) challenges still ahead
- ► Alternative EFTs are also good candidates for a BSM interpretation
- Non-resonant signals interesting also for light NP e.g. top-philic bosons, ALPs. . .  $\rightarrow$  relevant at  $\sqrt{s} \gg m$
- Distinguishing SMEFT / HEFT / other sources is an open challenge