Electroweak renormalization and the treatment of vacuum expectation values

Heidi Rzehak

Universität Tübingen

04 May 2023

"Trail" map for the talk

Electroweak renormalization and the treatment of vacuum expectation values

Important questions:

- What are the input parameters of my theory?
- What is their meaning?
- What is their relation to observables?

Electroweak renormalization and the treatment of vacuum expectation values

Electroweak renormalization and the treatment of vacuum expectation values

divergent at p = m \rightarrow physical?

Electroweak renormalization and the treatment of vacuum expectation values

Electroweak renormalization and the treatment of vacuum expectation values

\Rightarrow Establish meaning of parameters

\Rightarrow Establish meaning of parameters

 \Rightarrow Choice of expansion point of the perturbation series

Assumptions for the following

- Chosen regularization scheme is good (see e.g. [Gnendinger et al, arXiv:1705.01827]), in particular:
 - \star mathematically consistent
 - * compatible with QFT-properties of unitarity and causality
 - \star symmetries are preserved

otherwise: symmetry-restoring counterterms might be needed

Assumptions for the following

- Chosen regularization scheme is good (see e.g. [Gnendinger et al, arXiv:1705.01827]), in particular:
 - \star mathematically consistent
 - * compatible with QFT-properties of unitarity and causality
 - \star symmetries are preserved

otherwise: symmetry-restoring counterterms might be needed

 \rightarrow Multiplicative renormalization:

Parameters: $g_j^0 = Z_{g_j}g_j = g_j + \delta g_j^{(1)} + \delta g_j^{(2)} + \dots$ Fields: $f_j^0 = (\sqrt{Z_f})_{jk}f_k = (\delta_{jk} + \frac{1}{2}(\delta^{(1)}Z_f)_{jk} + \dots)f_k$

Criteria for reasonable renormalization conditions

- Numerical stability of the perturbative expansion should be ensured.
- No "dead corners" in parameter space
 - \rightarrow avoid singularities in physical observables
- S-matrix elements = gauge-independent functions of renormalized parameters
- Simple: Avoid dependence on a specific physical process
- Good decoupling properties in case of heavy particles

formulated for mixing angles in [Denner, Dittmaier, Lang 1808:03466; Freitas, Stöckinger hep-ph/0205281]

- Bookkeeping and number of parameters
- Mixing angles

• Treatment of tadpole contributions

(connected to the renormalization of vacuum expectation values)

Higgs potential in the SM:

$$V = -\frac{\mu_2^2}{2} (\Phi^{\dagger} \Phi) + \frac{\lambda_2}{4} (\Phi^{\dagger} \Phi)^2$$

At leading order $(\mu_2^2 > 0)$: Minimum at $(\Phi^{\dagger}\Phi) = \frac{2\mu_2^2}{\lambda_2}$

Common choice:

$$\Phi = \left(\begin{array}{c} \phi^+ \\ \frac{1}{\sqrt{2}}(\nu + \eta + \mathrm{i}\chi) \end{array}\right)$$

 $\begin{array}{ll} v & = {\rm vacuum\ expectation\ value\ of\ Higgs\ doublet} \\ \eta & = {\rm physical\ Higgs\ field} \\ \phi^+ & = {\rm charged\ Goldstone-boson\ field} \\ \chi & = {\rm neutral\ Goldstone-boson\ field} \end{array}$

In matrix notation: (for later convenience):

Higgs potential in the SM:

$$V = -\frac{\mu_2^2}{2} \operatorname{tr} \left[\mathbf{\Phi}^{\dagger} \mathbf{\Phi} \right] + \frac{\lambda_2}{16} \left(\operatorname{tr} \left[\mathbf{\Phi}^{\dagger} \mathbf{\Phi} \right] \right)^2$$

At leading order ($\mu_2^2 > 0$): Minimum at $\frac{1}{2} \operatorname{tr} \left[\mathbf{\Phi}^{\dagger} \mathbf{\Phi} \right] = \frac{2\mu_2^2}{\lambda_2}$

Electroweak renormalization and the treatment of vacuum expectation values

In matrix notation: (for later convenience):

Higgs potential in the SM:

$$V = -\frac{\mu_2^2}{2} \operatorname{tr} \left[\mathbf{\Phi}^{\dagger} \mathbf{\Phi} \right] + \frac{\lambda_2}{16} \left(\operatorname{tr} \left[\mathbf{\Phi}^{\dagger} \mathbf{\Phi} \right] \right)^2$$

At leading order ($\mu_2^2 > 0$): Minimum at $\frac{1}{2} \operatorname{tr} \left[\mathbf{\Phi}^{\dagger} \mathbf{\Phi} \right] = \frac{2\mu_2^2}{\lambda_2}$

Higgs doublet in matrix notation

$$\Phi = \frac{1}{\sqrt{2}} [(\mathbf{v} + \eta)\mathbf{1} + 2i\phi], \qquad \phi \equiv \frac{\phi_j \sigma_j}{2} = \frac{\vec{\phi} \cdot \vec{\sigma}}{2}$$
Relations between ϕ^{\pm} , χ and ϕ_j , $j = 1, \dots, 3$:
 $\phi^{\pm} = \frac{1}{\sqrt{2}} (\phi_2 \pm i\phi_1)$
 $\chi = -\phi_3$

Electroweak renormalization and the treatment of vacuum expectation values

In matrix notation: (for later convenience):

0

Higgs potential in the SM:

At

$$V = -\frac{\mu_2^2}{2} \operatorname{tr} \left[\mathbf{\Phi}^{\dagger} \mathbf{\Phi} \right] + \frac{\lambda_2}{16} \left(\operatorname{tr} \left[\mathbf{\Phi}^{\dagger} \mathbf{\Phi} \right] \right)^2$$

leading order ($\mu_2^2 > 0$): Minimum at $\frac{1}{2} \operatorname{tr} \left[\mathbf{\Phi}^{\dagger} \mathbf{\Phi} \right] = \frac{2\mu_2^2}{\lambda_2}$

Higgs doublet in matrix notation

$$\mathbf{\Phi} = rac{1}{\sqrt{2}} ig[(\mathbf{v} + \eta) \mathbbm{1} + 2\mathrm{i} oldsymbol{\phi} ig], \qquad oldsymbol{\phi} \equiv rac{\phi_j \sigma_j}{2} = rac{ec{\phi} \cdot ec{\sigma}}{2}$$

Inserting $\mathbf{\Phi}$ in V leads to term $\propto \eta$:

$$V = \dots + \underbrace{\frac{1}{4}\nu(-4\mu_2^2 + \lambda_2\nu^2)}_{=-t_n}\eta$$

Vacuum expectation values and tadpole contributions

Beyond leading order:

Tadpole contributions in $V \propto \eta$ occur:

Convenient choice:

$$\overset{-\eta}{_{R}} = T_{\eta} + \delta t_{\eta} = -\overset{\eta}{_{-}} - \bigcirc + \cdots \times \overset{!}{=} 0$$

$$\Rightarrow \text{ e.g.} \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad + \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad = 0$$

Electroweak renormalization and the treatment of vacuum expectation values

Issues with tadpole contributions

- On-shell conditions
 - (= parameters defined via physical observables):

Tadpole contributions cancel \Rightarrow independent on tadpole treatment

- $\overline{\text{MS}}/\overline{\text{DR}}$ conditions:
 - * $\overline{\text{MS}}/\overline{\text{DR}}$ masses (also in SM!)
 - $\star~\overline{\text{MS}}/\overline{\text{DR}}$ mixing angles

depend on tadpole treatment.

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

Electroweak renormalization and the treatment of vacuum expectation values

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

• Expansion about the minimum of the potential at leading order

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

$$t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0$$

 \uparrow

minimum condition

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

• Expansion about the minimum of the potential at leading order

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

renormalization condition

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

• Expansion about the minimum of the potential at leading order:

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

 $t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0 \Rightarrow t_{\eta} = 0$

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

```
[Fleischer, Jegerlehner 80;
Actis, Ferroglia, Passera,
Passarino hep-ph/0612122]
```

• Expansion about the minimum of the potential at leading order

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

 $t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0 \Rightarrow t_{\eta} = 0$

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

 \bullet Expansion about the minimum of the potential at leading order

 $t_{\eta,0} \stackrel{!}{=} 0$

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

$$t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0 \Rightarrow t_{\eta} = 0$$

 $t_{\eta,0} = t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} = \delta t_{\eta}^{\mathsf{PRTS}}$

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

 \bullet Expansion about the minimum of the potential at leading order

 $t_{\eta,0} \stackrel{!}{=} 0$

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

$$t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0 \Rightarrow t_{\eta} = 0$$

 $t_{\eta,0} = t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} = \delta t_{\eta}^{\mathsf{PRTS}} \Rightarrow$ gauge-dependent $\delta t_{\eta}^{\mathsf{PRTS}}$ enters relation between parameters and physical observables

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

 \bullet Expansion about the minimum of the potential at leading order

 $t_{\eta,0} \stackrel{!}{=} 0$

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

$$t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0 \Rightarrow t_{\eta} = 0$$

 $t_{\eta,0} = t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} = \delta t_{\eta}^{\mathsf{PRTS}} \Rightarrow$ gauge-dependent $\delta t_{\eta}^{\mathsf{PRTS}}$ enters relation between parameters and physical observables

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

• Expansion about the minimum of the potential at leading order

 $t_{\eta,0} \stackrel{!}{=} 0 \Rightarrow$ no gauge dependencies

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

$$t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0 \Rightarrow t_{\eta} = 0$$

 $t_{\eta,0} = t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} = \delta t_{\eta}^{\mathsf{PRTS}} \Rightarrow$ gauge-dependent $\delta t_{\eta}^{\mathsf{PRTS}}$ enters relation between parameters and physical observables

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

```
[Fleischer, Jegerlehner 80;
Actis, Ferroglia, Passera,
Passarino hep-ph/0612122]
```

• Expansion about the minimum of the potential at leading order

 $t_{\eta,0} \stackrel{!}{=} 0 \Rightarrow$ no gauge dependencies

Ensuring $\delta t_n^{\text{FJTS}} + T_\eta = 0$ by shifting $\eta \to \eta + \Delta v$

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

$$t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0 \Rightarrow t_{\eta} = 0$$

 $t_{\eta,0} = t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} = \delta t_{\eta}^{\mathsf{PRTS}} \Rightarrow$ gauge-dependent $\delta t_{\eta}^{\mathsf{PRTS}}$ enters relation between parameters and physical observables

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

• Expansion about the minimum of the potential at leading order

 $t_{\eta,0} \stackrel{!}{=} 0 \Rightarrow$ no gauge dependencies

Ensuring $\delta t_{\eta}^{\mathsf{FJTS}} + T_{\eta} = 0$ by shifting $\eta \to \eta + \Delta v$

 \Rightarrow Term $\propto \eta$ in V: $\frac{1}{2}M_h^2\eta^2 \rightarrow M_h^2\Delta v \eta + \dots$

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

$$t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0 \Rightarrow t_{\eta} = 0$$

 $t_{\eta,0} = t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} = \delta t_{\eta}^{\mathsf{PRTS}} \Rightarrow$ gauge-dependent $\delta t_{\eta}^{\mathsf{PRTS}}$ enters relation between parameters and physical observables

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

• Expansion about the minimum of the potential at leading order

 $t_{\eta,0} \stackrel{!}{=} 0 \Rightarrow$ no gauge dependencies

Ensuring $\delta t_{\eta}^{\mathsf{FJTS}} + T_{\eta} = 0$ by shifting $\eta \to \eta + \Delta v$

 $\Rightarrow \text{Term} \propto \eta \text{ in } V: \quad \frac{1}{2}M_h^2\eta^2 \rightarrow M_h^2\Delta v \eta + \ldots \Rightarrow -M_h^2\Delta v + T_\eta = 0$

Parameter Renormalized Tadpole Scheme (PRTS): [Böhm, Hollik, Spiesberger 86; Denner 0709.1075]

• Expansion about the loop-corrected minimum of the effective potential:

$$t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} + T_{\eta} = 0 \Rightarrow t_{\eta} = 0$$

 $t_{\eta,0} = t_{\eta} + \delta t_{\eta}^{\mathsf{PRTS}} = \delta t_{\eta}^{\mathsf{PRTS}} \Rightarrow$ gauge-dependent $\delta t_{\eta}^{\mathsf{PRTS}}$ enters relation between parameters and physical observables

Fleischer-Jegerlehner Tadpole Scheme (FJTS):

[Fleischer, Jegerlehner 80; Actis, Ferroglia, Passera, Passarino hep-ph/0612122]

relatively

large corrections

[Jegerlehner et al 1212.4319; Kniehl et al 1503.02138:

Kataev et al 2201.12073]

• Expansion about the minimum of the potential at leading order

 $t_{\eta,0} \stackrel{!}{=} 0 \Rightarrow$ no gauge dependencies

Ensuring
$$\delta t_n^{\text{FJTS}} + T_\eta = 0$$
 by shifting $\eta \to \eta + \Delta v$

 $\Rightarrow -M_h^2 \Delta v + T_\eta = 0$

see also

PRTS:

+ Expansion about loop-corrected minimum of the effective potential

- \rightarrow relatively small corrections
- Gauge dependence

FJTS:

+ Gauge independence

- Expansion about minimum of the potential at leading order

 \rightarrow relatively large corrections

Idea:

[Dittmaier, HR 2203.07236; 2206.01479]

- Expansion about the corrected minimum of the effective potential
- Use field basis in which v + h(x) is gauge-invariant

Idea:

- Expansion about the corrected minimum of the effective potential
- Use field basis in which v + h(x) is gauge-invariant

 \rightarrow Switch to non-linear (nl) representation:

[Lee, Zinn-Justin '72; ...; Grosse-Knetter, Körgeler hep-ph/9212268; Dittmaier, Grosse-Knetter hep-ph/9501285]

```
\mathbf{\Phi} = \frac{1}{\sqrt{2}}(v+h)U(\zeta) with U(\zeta) \equiv \exp\left(\frac{2i\zeta}{v}\right)
```

h= physical Higgs field, $\zeta\equiv rac{\zeta_j\sigma_j}{2}=$ Goldstone matrix, j=1,2,3

Idea:

- Expansion about the corrected minimum of the effective potential
- Use field basis in which v + h(x) is gauge-invariant

 \rightarrow Switch to non-linear (nl) representation:

[Lee, Zinn-Justin '72; ...; Grosse-Knetter, Körgeler hep-ph/9212268; Dittmaier, Grosse-Knetter hep-ph/9501285]

$$\mathbf{\Phi} = \frac{1}{\sqrt{2}}(v+h)U(\zeta)$$
 with $U(\zeta) \equiv \exp\left(\frac{2i\zeta}{v}\right)$

h= physical Higgs field, $\zeta\equiv rac{\zeta_j\sigma_j}{2}=$ Goldstone matrix, j=1,2,3

Gauge transformation: $\Phi = \underbrace{S(\theta)}_{\exp(\frac{1}{2}g_2\theta_i\sigma_i)} \Phi \underbrace{S_Y(\theta_Y)}_{\exp(\frac{1}{2}g_1\theta_Y\sigma_3)} \overset{\theta_a = \text{gauge parameters}}{g_n = \text{gauge couplings}}$

$$\Rightarrow$$
 $h \rightarrow h$, $U(\zeta) \rightarrow S(\theta)U(\zeta)S_Y(heta_Y)$

Electroweak renormalization and the treatment of vacuum expectation values

Idea:

- Expansion about the corrected minimum of the effective potential
- Use field basis in which v + h(x) is gauge-invariant

 \rightarrow Switch to non-linear (nl) representation:

[Lee, Zinn-Justin '72; ...; Grosse-Knetter, Körgeler hep-ph/9212268; Dittmaier, Grosse-Knetter hep-ph/9501285]

$$\mathbf{\Phi} = \frac{1}{\sqrt{2}}(v+h)U(\zeta)$$
 with $U(\zeta) \equiv \exp\left(\frac{2i\zeta}{v}\right)$

h= physical Higgs field, $\zeta\equiv rac{\zeta_j\sigma_j}{2}=$ Goldstone matrix, j=1,2,3

Then: $\Phi^{\dagger} \Phi = \frac{1}{2} (v + h)^2$

 \rightarrow no Goldstone-boson terms in the Higgs potential

Kinetic term:

$$\mathcal{L}_{\mathsf{H},\mathsf{kin}} = rac{1}{2} \mathsf{tr} \left[(D_{\mu} \mathbf{\Phi})^{\dagger} (D^{\mu} \mathbf{\Phi})
ight]$$

with the covariant derivative

$$D^{\mu} \mathbf{\Phi} = \partial^{\mu} \mathbf{\Phi} - i g_2 \mathbf{W}^{\mu} \mathbf{\Phi} - i g_1 \mathbf{\Phi} B^{\mu} \frac{\sigma_3}{2}, \qquad \mathbf{W}^{\mu} \equiv \frac{W_j^{\mu} \sigma_j}{2}$$

then

$$\mathcal{L}_{\mathsf{H},\mathsf{kin}} = \frac{1}{4} \mathsf{tr} \left[\left(\partial_{\mu} h + \mathrm{i}g_2 \mathbf{C}_{\mu}^{(\mathrm{u})}(v+h) \right) \left(\partial^{\mu} h - \mathrm{i}g_2 \mathbf{C}^{(\mathrm{u}),\mu}(v+h) \right) \right]$$
$$= \frac{1}{2} (\partial h)^2 + \frac{g_2^2}{8} (v+h)^2 \vec{C}_{\mu}^{(\mathrm{u})} \cdot \vec{C}^{(\mathrm{u}),\mu}$$

with

$$\mathbf{C}_{\mu}^{(\mathrm{u})} \equiv U(\boldsymbol{\zeta})^{\dagger} \, \mathbf{W}_{\mu} \, U(\boldsymbol{\zeta}) + \frac{\mathrm{i}}{g_2} U(\boldsymbol{\zeta})^{\dagger} \, \partial_{\mu} U(\boldsymbol{\zeta}) + \frac{g_1}{g_2} B_{\mu} \frac{\sigma_3}{2}$$

Kinetic term:

$$\mathcal{L}_{\mathsf{H},\mathsf{kin}} = \frac{1}{2} \mathsf{tr} \left[(D_{\mu} \mathbf{\Phi})^{\dagger} (D^{\mu} \mathbf{\Phi}) \right]$$

with the covariant derivative

$$D^{\mu} \mathbf{\Phi} = \partial^{\mu} \mathbf{\Phi} - ig_2 \mathbf{W}^{\mu} \mathbf{\Phi} - ig_1 \mathbf{\Phi} B^{\mu} \frac{\sigma_3}{2}, \qquad \mathbf{W}^{\mu} \equiv \frac{W_j^{\mu} \sigma_j}{2}$$

then

$$\begin{aligned} \mathcal{L}_{\mathsf{H},\mathsf{kin}} &= \frac{1}{2} (\partial h)^2 + \frac{(\nu+h)^2}{2\nu^2} \bigg\{ (\partial_{\mu}\vec{\zeta}) \cdot (\partial^{\mu}\vec{\zeta}) + \frac{g_2^2 \nu^2}{4} \vec{C}_{\mu} \cdot \vec{C}^{\mu} \\ &+ g_1 g_2 B_{\mu} \big[-W_3^{\mu} \zeta^2 + (\vec{W}^{\mu} \cdot \vec{\zeta}) \zeta_3 \big] - g_2^2 \nu \vec{C}_{\mu} \cdot (\vec{W}^{\mu} \times \vec{\zeta}) \\ &- g_2 \nu \vec{C}_{\mu} \cdot \partial^{\mu}\vec{\zeta} - g_2 (\vec{C}_{\mu} - 2\vec{W}_{\mu}) \cdot (\vec{\zeta} \times \partial^{\mu}\vec{\zeta}) \bigg\} + \mathcal{O}(\zeta^3) \end{aligned}$$
with $\vec{C}^{\mu} = (W_1^{\mu}, W_2^{\mu}, \frac{Z^{\mu}}{\cos\theta_W})^{\mathsf{T}} \qquad \begin{array}{c} Z^{\mu} \hat{=} \mathsf{Z} \text{ boson} \\ &\theta_W \hat{=} \text{ weak mixing angle} \end{array}$

Gauge-fixing Lagrangian:

$$\mathcal{L}_{gf} = -\frac{1}{2\xi_A} \left(\partial_\mu A^\mu\right)^2 - \frac{1}{2\xi_A} \left(\partial_\mu Z^\mu + \xi_Z M_Z \zeta_3\right)^2 -\frac{1}{\xi_W} \left(\partial_\mu W^{+\mu} - \mathrm{i}\xi_W M_W \zeta^+\right) \left(\partial_\nu W^{-\nu} + \mathrm{i}\xi_W M_W \zeta^-\right)$$

with

$$\begin{aligned} \zeta^{\pm} &= (\zeta_2 \pm i\zeta_1)/\sqrt{2} \\ W^{\pm}_{\mu} &= (W_{1,\mu} \mp iW_{2,\mu})/\sqrt{2} \ \hat{=} \ W^{\pm} \ \text{boson} \\ A^{\mu} &\triangleq \text{photon} \\ \xi_{A}, \ \xi_{Z}, \ \xi_{W} \ \hat{=} \ \text{gauge parameters} \\ M_{Z}, \ M_{W} \quad \hat{=} \ \text{Z- and W-boson masses} \end{aligned}$$

Gauge-fixing Lagrangian:

$$\mathcal{L}_{gf} = -\frac{1}{2\xi_A} \left(\partial_\mu A^\mu\right)^2 - \frac{1}{2\xi_A} \left(\partial_\mu Z^\mu + \xi_Z M_Z \zeta_3\right)^2 -\frac{1}{\xi_W} \left(\partial_\mu W^{+\,\mu} - \mathrm{i}\xi_W M_W \zeta^+\right) \left(\partial_\nu W^{-\,\nu} + \mathrm{i}\xi_W M_W \zeta^-\right)$$

 $\Rightarrow \zeta$ fields enter also ghost Lagrangian

Electroweak renormalization and the treatment of vacuum expectation values Heidi Rzehak

Relations

between component fields of linear and non-linear representation:

$$\eta = \cos\left(\frac{\zeta}{v}\right)(v+h) - v = h - \frac{\zeta^2}{2v}\left(1 + \frac{h}{v}\right) + \mathcal{O}(\zeta^4)$$
$$\vec{\phi} = \frac{\sin\left(\frac{\zeta}{v}\right)}{\zeta}(v+h)\vec{\zeta} = \left(1 + \frac{h}{v}\right)\vec{\zeta} + \mathcal{O}(\zeta^3)$$

 \Rightarrow ($\eta, \vec{\phi}$) and ($h, \vec{\zeta}$) agree up to higher powers in $\zeta \equiv |\vec{\zeta}|$.

Electroweak renormalization and the treatment of vacuum expectation values

Tadpole contributions

In the linear representation:

$$\Gamma^{\eta} = T^{\eta} = -\frac{\eta}{2} \cdot \left(\begin{array}{c} \eta \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} f \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left$$

In the non-linear representation:

$$\Gamma_{\rm nl}^{h} = T_{\rm nl}^{h} = -\frac{h}{4} \cdot \left(1 \right) + -\frac{h}{4} \cdot \left(1 \right)$$

 \rightarrow gauge independent

Electroweak renormalization and the treatment of vacuum expectation values Hei

Tadpole contributions

In the linear representation:

$$\Gamma^{\eta} = T^{\eta} = -\frac{\eta}{2} \cdot \left(\begin{array}{c} \eta \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} f \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left(\begin{array}{c} v \\ \eta \end{array} \right) + -\frac{\eta}{2} \cdot \left$$

In the non-linear representation:

$$\Gamma_{\rm nl}^{h} = T_{\rm nl}^{h} = -\frac{h}{4} \cdot \left(\sum_{j=1}^{h} + \frac{h}{4} \cdot \sum_{j=1}^{f} + \frac{h}{4} \cdot \sum_{j=1}^{V} + \frac{h}{4} \cdot \sum_{j=1}^{f} + \frac{h}{4} \cdot \sum_{j=1}^{f} + \frac{h}{4} \cdot \sum_{j=1}^{f} \left(\sum_{j=1}^{h} + M_{H}^{2} \Delta v_{\xi}, \quad \Delta v_{\xi} = \frac{1}{16\pi^{2}v} \left\{ \frac{1}{2} A_{0}(\xi_{Z} M_{Z}^{2}) + A_{0}(\xi_{W} M_{W}^{2}) \right\}$$

$$\xi_{a} = \text{gauge parameters, } A_{0} = 1\text{-point scalar integral}$$

[Dittmaier, HR 2203.07236; 2206.01479]

Decomposition of tadpole contributions: see also [Dūdėnas, Löschner 2010.15076]

 $\delta t^{\text{GIVS}} = \delta t_1^{\text{GIVS}} + \delta t_2^{\text{GIVS}}$

[Dittmaier, HR 2203.07236; 2206.01479]

Decomposition of tadpole contributions: see also [Dūdėnas, Löschner 2010.15076]

 $\delta t^{\rm GIVS} = \delta t_1^{\rm GIVS} + \delta t_2^{\rm GIVS}$

Fix parts via:

PRTS part: $\delta t_1^{\text{GIVS}} = -T_h^{\text{nl}} \longrightarrow \text{leads to} \qquad \text{relatively small} \\ \text{NI O contributions}$

Electroweak renormalization and the treatment of vacuum expectation values

[Dittmaier, HR 2203.07236; 2206.01479]

Decomposition of tadpole contributions: see also [Dūdėnas, Löschner 2010.15076]

 $\delta t^{\text{GIVS}} = \delta t_1^{\text{GIVS}} + \delta t_2^{\text{GIVS}}$

Fix parts via:

relatively small PRTS part: $\delta t_1^{\text{GIVS}} = -T_b^{\text{nl}}$ \rightarrow leads to NLO contributions FJTS part: $\eta \rightarrow \eta + \Delta v_{\varepsilon}$ \rightarrow compensates gauge dependence $\delta t_2^{\text{GIVS}} = -M_b^2 \Delta v_{\mathcal{E}} = T_b^{\text{nl}} - T_n$

[Dittmaier, HR 2203.07236; 2206.01479]

Decomposition of tadpole contributions: see also [Dūdenas, Löschner 2010.15076]

$$\delta t^{\rm GIVS} = \delta t_1^{\rm GIVS} + \delta t_2^{\rm GIVS} = -T_\eta$$

Fix parts via:

PRTS part:
$$\delta t_1^{\text{GIVS}} = -T_h^{\text{nl}} \rightarrow \text{leads to}$$

FJTS part: $\eta \rightarrow \eta + \Delta v_{\xi}$
 $\delta t_2^{\text{GIVS}} = -M_h^2 \Delta v_{\xi} = T_h^{\text{nl}} - T_{\eta} \rightarrow \frac{\text{compensates}}{\text{gauge dependence}}$

Comparison of Schemes

Conversion from on-shell mass M^{OS} to $M^{\overline{MS}}$ via bare mass M_{Ω} :

 $M_0 = M^{OS} + \delta M^{OS} = M^{\overline{MS}} + \delta M^{\overline{MS}}$

Difference between on-shell and \overline{MS} mass:

 $\Delta M^{\overline{\rm MS}-\rm OS} = \delta M^{\rm OS} - \delta M^{\overline{\rm MS}} = \delta M^{\rm OS}|_{\rm finite}$

	$M^{OS}[GeV]$	$\Delta M_{\sf EW}^{\overline{\sf MS}-{\sf OS}}[{ m GeV}]$			
		FJTS	PRTS	GIVS	
W boson	80.379	-2.22	0.82	0.74	GIVS leads to
Z boson	91.1876	-0.77	1.25	1.14	much smaller
Higgs boson	125.1	6.34	3.16	2.80	corrections
top quark	172.4	10.75	0.99	0.54	than FJIS!
bottom quark	4.93	-1.79	0.10	0.13	
au lepton	1.77686	-0.93	-0.028	-0.015	

Electroweak renormalization and the treatment of vacuum expectation values

Heidi Rzehak

to

Already available for:

[Dittmaier, HR 2206.01479]

- Singlet extension of the SM: non-linear representation: straightforward
- Two-Higgs-Doublet Model (2HDM)

Already available for:

[Dittmaier, HR 2206.01479]

- Singlet extension of the SM: non-linear representation: straightforward
- Two-Higgs-Doublet Model (2HDM)

linear representation of Higgs doublets in matrix form (n = 1, 2):

$$\mathbf{\Phi}_n = \frac{1}{\sqrt{2}} \big[(\mathbf{v}_n + \eta_n) \mathbb{1} + 2\mathrm{i}\phi_n \big], \qquad \phi_n \equiv \frac{\phi_{nj}\sigma_j}{2}$$

Already available for:

[Dittmaier, HR 2206.01479]

- Singlet extension of the SM:
- Two-Higgs-Doublet Model (2HDM) non-linear representation of Higgs doublets (n = 1, 2):

$$\mathbf{\Phi}_n = U(\boldsymbol{\zeta}) \, \mathbf{\Phi}_n^{(\mathrm{u})}$$
 with $\mathbf{\Phi}_n^{(\mathrm{u})} = \frac{1}{\sqrt{2}} \left[(v_n + h_n) \mathbb{1} + \mathrm{i} c_{nj} \sigma_j \rho_j \right]$

Requiring canonical field normalization:

$$c_{1j} = c_1 = -\frac{v_2}{v} \equiv -\sin\beta, \quad c_{2j} = c_2 = \frac{v_1}{v} \equiv \cos\beta, \quad v \equiv \sqrt{v_1^2 + v_2^2}$$

Electroweak renormalization and the treatment of vacuum expectation values

i= 1, 2, 3

GIVS for BSM

GIVS can be formulated for BSM:

Already available for:

[Dittmaier, HR 2206.01479]

- Singlet extension of the SM:
- Two-Higgs-Doublet Model (2HDM)

Relation between the fields of the two representations:

$$\eta_n = \cos\left(\frac{\zeta}{v}\right)(v_n + h_n) - v_n - \sin\left(\frac{\zeta}{v}\right)c_n\frac{\vec{\rho}\cdot\vec{\zeta}}{\zeta}$$
$$\vec{\phi}_n = c_n\cos\left(\frac{\zeta}{v}\right)\vec{\rho} + \sin\left(\frac{\zeta}{v}\right)\left[(v_n + h_n)\frac{\vec{\zeta}}{\zeta} + c_n\frac{\vec{\rho}\times\vec{\zeta}}{\zeta}\right]$$

GIVS for BSM

GIVS can be formulated for BSM:

Already available for:

[Dittmaier, HR 2206.01479]

- Singlet extension of the SM:
- Two-Higgs-Doublet Model (2HDM) Higgs potential:

$$\begin{split} V = & \frac{m_{11}^2}{2} \mathrm{tr} \left[\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_1 \right] + \frac{m_{22}^2}{2} \mathrm{tr} \left[\mathbf{\Phi}_2^{\dagger} \mathbf{\Phi}_2 \right] - m_{12}^2 \mathrm{tr} \left[\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_2 \right] \\ &+ \frac{\lambda_1}{8} \left(\mathrm{tr} \left[\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_1 \right] \right)^2 + \frac{\lambda_2}{8} \left(\mathrm{tr} \left[\mathbf{\Phi}_2^{\dagger} \mathbf{\Phi}_2 \right] \right)^2 + \frac{\lambda_3}{4} \mathrm{tr} \left[\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_1 \right] \mathrm{tr} \left[\mathbf{\Phi}_2^{\dagger} \mathbf{\Phi}_2 \right] \\ &+ \lambda_4 \mathrm{tr} \left[\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_2 \Omega_+ \right] \mathrm{tr} \left[\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_2 \Omega_- \right] + \frac{\lambda_5}{2} \left[\left(\mathrm{tr} \left[\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_2 \Omega_+ \right] \right)^2 + \left(\mathrm{tr} \left[\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_2 \Omega_- \right] \right)^2 \right] \end{split}$$

with $\Omega_{\pm} = \frac{1}{2}(1 \pm \sigma_3)$

GIVS for BSM

Numerical example: $h \rightarrow 4f$ in the 2HDM: [Dittmaier, HR 2206.01479]

		A1		
Ren. scheme	tadpoles	LO	NLO	
$OS12(\alpha,\beta)$		0.89832(3)	$0.96194(7)^{-0.1\%}_{+0.1\%}$	
$\overline{MS}(\alpha,\beta)$	FJTS	$0.89996(3)^{+0.7\%}_{-7.4\%}$	$0.96283(7)^{+0.8\%}_{-0.2\%}$	
		$\Delta_{\rm OS12}=+0.2\%$	$\Delta_{\rm OS12}=+0.1\%$	
$\overline{MS}(\alpha,\beta)$	PRTS	$0.89035(3)^{-2.8\%}_{+0.9\%}$	$0.96103(7)^{+1.2\%}_{+0.4\%}$	
		$\Delta_{\rm OS12}=-0.9\%$	$\Delta_{\rm OS12}=-0.1\%$	
$\overline{MS}(\alpha,\beta)$	GIVS	$0.89082(3)^{-2.7\%}_{+0.9\%}$	$0.96106(7)^{+1.2\%}_{+0.5\%}$	
		$\Delta_{\rm OS12}=-0.8\%$	$\Delta_{\rm OS12}=-0.1\%$	
$\overline{MS}(\lambda_3,\beta)$	FJTS	$0.89246(3)^{-15.1\%}_{+1.6\%}$	$0.96108(7)^{+17.3\%}_{+1.9\%}$	
		$\Delta_{\rm OS12}=-0.7\%$	$\Delta_{\rm OS12}=-0.1\%$	
$\overline{MS}(\lambda_3,\beta)$	PRTS/GIVS	$0.89156(3)^{-8.4\%}_{+1.7\%}$	$0.96111(7)^{+3.8\%}_{+2.1\%}$	
		$\Delta_{\rm OS12}=-0.8\%$	$\Delta_{\rm OS12}=-0.1\%$	

Electroweak renormalization and the treatment of vacuum expectation values

Already available for:

[Dittmaier, HR 2206.01479]

- Singlet extension of the SM:
- Two-Higgs-Doublet Model (2HDM)
 - \Rightarrow Improvement for $\overline{\text{MS}}$ defined mixing angles

Depending on process and parameter region:

On-shell definitions via ratios of form factors still better

e.g. for $H \rightarrow 4 f$ H = heavy CP-even Higgs boson in 2HDM [Denner, Dittmaier, Lang 1808:03466]

Summary

- Renormalization scheme: Fixes relations between physical observables and original parameters
- Challenge:

Find simple gauge-independent conditions

 \rightarrow numerically stable results in the whole parameter space

- Treatment of tadpoles:
 - \rightarrow in pure OS scheme not relevant
 - \rightarrow in $\overline{\text{MS}}/\overline{\text{DR}}$ schemes:

Hybrid scheme GIVS combines advantages of PRTS and FJTS: Numerical stability and gauge independence $M_h = 125 \text{ GeV}, M_H = 300 \text{ GeV}, M_{A_0} = M_{H^+} = 460 \text{ GeV},$ $\lambda_5 = -1.9, \tan \beta = 2, \cos(\beta - \alpha) = 0.1$ $\mu_0 = \frac{1}{5}(M_h + M_H + M_A + 2M_{H^+})$