Dark Matter from Early Universe Neutrino Oscillation

Yue Zhang

Carleton University

HET Seminar, Brookhaven National Laboratory July 2023

The Dark Matter Puzzle

Particle Physics Theories

Opportunities

Dark matter theories not only explain a number (Ω =26%), often associate with predictions in DM properties and other signals.

Exciting time to work on this: extensive experimental program to test and distinguish the various hypotheses.

Crucial to combine measurements from all possible frontiers: cosmology, astrophysics, and particle physics.

WIMP ('77) and Axion ('83)

Lots of searches, they still live well.

Sterile Neutrino ('93): in trouble?

Abazajian (1705.01837, Physics Reports)

Sterile Neutrino

Introduce a gauge singlet fermion, mix it with SM neutrinos

$$v_4 = \cos\theta v_s + \sin\theta v_a$$

Flavor eigenstates: v_a active, weakly interacting, v_s pure singlet.

 θ is vacuum mixing angle.

Minimal incarnation: a very simple two parameter model.

No Absolute Stability

 θ is constrained to be small — pointing to non thermal origins.

Assume 100% dark matter.

The Dodelson-Widrow Proposal

An elegant DM production mechanism via active-sterile neutrino oscillation in the early universe, assuming zero initial abundance. Two important ingredients:

Dodelson, Widrow (hep-ph/9303287, PRL)

Neutrino Oscillation Experiments

A neutrino experiment currently under construction:

Neutrino Oscillation Experiments

Neutrinos free stream for hundreds of miles. Weak interaction at most occurs twice. Flavour conversion among active neutrinos.

Neutrinos in Early Universe

At temperature T = 100 MeV. Size of universe $H^{-1} \sim 10-100$ miles, neutrino free-streaming length shorter than a meter.

Neutrinos in Early Universe

Interplay of two effects:

Active-sterile neutrino oscillation between two weak interactions.

Frequent weak interactions allow the oscillation to occur for many times: # oscillation baselines $\Gamma/H >> 1$ before decoupling.

Oscillation Probability

 $\Delta \sim m_4^2/E$: energy difference in vacuum θ : vacuum mixing angle V_T : high temperature potential energy

Note the $1/\Gamma^2$ terms in the denominator - quantum Zeno effect.

Boltzmann Equation

Phase space distribution

$$\frac{df_4}{d\log T} = \frac{\Gamma}{4H} P_{\nu_a \to \nu_4} f_a$$

Overall effect is not linear in Γ. (different from vanilla ``freeze in'')

Weak interaction rate $\Gamma \sim G_F^2 T^5$. Dark matter production rate suppressed at both very high and low temperatures.

 \rightarrow Sterile neutrino DM dominantly produced at $T \sim 100$ MeV.

Production Time Window

Dodelson, Widrow (hep-ph/9303287, PRL)

However, already excluded..

Assumptions: no DM population at very early times; no/little particle-antiparticle asymmetries

Lepton Asymmetric Universe?

Shi and Fuller (astro-ph/9810076, PRL) suggested that a primordial lepton asymmetry can create a matter potential and trigger the MSW resonant⁺ active-sterile neutrino (or anti-neutrino) conversion.

⁺Resonance does not occur for the Dodelson-Widrow case - thermal potential has the opposite sign.

For years, the Shi-Fuller mechanism served as the leading alternative production mechanism of sterile neutrino dark matter.

This possibility recently has been excluded by the DES collaboration.

DES Observes Ultra-faint Dwarfs

Lower bound on dark matter mass from # of ultra-faint dwarf galaxies.

DES Collaboration (2008.00022, PRL)

Ways Out?

A tantalizing puzzle calling for new theoretical ideas.

UV physics could contribute extra DM abundance. Totally different picture than just described: DM relic unrelated to θ ; New physics scale often beyond the reach of collider experiments.

Sound like surrendering.

Does any dark matter production mechanism via early universe neutrino oscillation work at all?

A Simple Idea

$\Omega_4 \propto [weak interaction rate] \times \sin^2 2\theta$ total

Intuition: compensate smaller mixing with larger reaction rate.

Requirement: new physics enhances Γ but without introducing additional DM radiative decay mode.

Particles in early universe plasma T~100 MeV: e, μ, u, d, γ, v

Neutrino Self Interaction: Opportunities

Never directly measured. Allowed to be much stronger. *Zvv* coupling at LEP is an indirect measurement.

A Simple Model

Add to Standard Model

$$\mathcal{L}_{\text{int}} = rac{(LH)^2}{\Lambda^2} arphi \; \stackrel{\text{EWSB}}{\longrightarrow} \lambda v^2 arphi$$

 φ is a complex or real scalar, SM singlet, light.

In case φ is the Majoron, coupling λ is proportional to neutrino mass matrix and 1/F. (F: lepton number breaking scale)

New Production Mechanism

After v decouples from weak interaction, still talk to themselves.

Heavy Mediator Scenario

Light Mediator Scenario

When $T > m_{\varphi}$, φ can thermalize, on-shell contribution dominates the $vv \rightarrow vv_4$ scattering. Effectively, φ decays to v_4 .

Opens Up Wide Window

Three Regimes

Numerical Result

Numerical Result

Testing the Mechanism

Known Particle Decays

Barger, Keung, Pakvasa (1982, PRD) PIENU (2020, PRD); NA62 (2021, PLB); Heintze et al (1979, NPB)

Known Limits

Mono-Neutrino Signal

Beamstrahlung process: $v_{\mu}+N \rightarrow \mu^{+}+N'+\varphi$, features

- Missing transverse momentum p_T
- "Wrong-sign" outgoing muon

Kelly, YZ (1901.01259, PRD)

Theorists' Simulation

Nucleon level simulation, smearing

$$3\%/\sqrt{E_{\text{muon}}[\text{GeV}]}, 20\%/\sqrt{E_{\text{proton}}[\text{GeV}]}, 40\%/\sqrt{E_{\text{neutron}}[\text{GeV}]}$$

DUNE CDR (2015)

Neutrino Experiment Coverage

Kelly, YZ (1901.01259, PRD)

Combine with the DES Constraint

Each production scenario features a characteristic phase space distribution of dark matter. Damping scale in the matter power spectrum sensitive to sterile neutrino DM mass.

An, Gluscevic, Nadler, YZ (2301.08299)

Strong Interplay among Frontiers

DES: pushes DM to higher masses \rightarrow X-ray: smaller mixing angles \rightarrow Relic density $\Omega \propto \theta^2 \lambda^{2(3)}$ in turn requires larger couplings. \rightarrow Neutrino self-interaction via a heavy mediator φ excluded.

An, Gluscevic, Nadler, YZ (2301.08299)

Strong Interplay among Frontiers

DES: pushes DM to higher masses \rightarrow X-ray: smaller mixing angles \rightarrow Relic density $\Omega \propto \theta^2 \lambda^{2(3)}$ in turn requires larger couplings. \rightarrow Neutrino self-interaction via a heavy mediator φ excluded.

An, Gluscevic, Nadler, YZ (2301.08299)

Moving to Smaller Couplings

Core-collapse Supernova

Sensitive to more weakly coupled φ

٦) on-shell φ ${\mathcal V}_4$

- Similar environment as early universe.
- Energy loss due to prompt decay $\varphi \rightarrow vv_4$ under the "neutrino sphere".
- Same fundamental process as dark matter production mechanism.

Constraint from SN 1987A

Chen, Sen, Tangarife, Tuckler, YZ (2207.14300, JCAP)

Lighter Mediator versus BBN

For dark matter production, φ must decay into $v + v_4 \rightarrow m_{\varphi} > m_4$

φ -v Cosmology

The temporary existence of φ after neutrino decouples from the electron-photon plasma makes neutrino sector non-standard.

Net Contribution to ΔN_{eff}

Kelly, Sen, YZ (2011.02487, PRL)

Indirect Detection and ΔN_{eff}

Kelly, Sen, YZ (2011.02487, PRL)

Big Picture: Neutrino Self-interaction

Blinov, Bustamante, Kelly, YZ, et al (2203.01955, Snowmass whitepaper)

Conclusion

Dark matter and neutrino are both elusive members of the universe. This makes it inspiring to speculate on their potential connections.

Neutrino self-interaction via light scalar can play instrumental role in the origin of sterile neutrino dark matter.

A number of ways for testing such a hypothesis with the upcoming particle physics and cosmology experiments.

Thanks!

bonus

Vector Mediator Case

Kelly, Sen, Tangarife, YZ (2005.03681)

Indirect Detection and ΔN_{eff}

Kelly, Sen, YZ (2011.02487, PRL)

Dark Matter Decay to Neutrinos

Neutrinos from v₄ DM decay: same Feynman diagram for dark matter production also makes it decay.

Neutrino Spectrum at Earth

Vitagliano, Tamborra, Raffelt (1910.11878)

Neutrino Spectrum at Earth

Vitagliano, Tamborra, Raffelt (1910.11878)

Detecting keV Neutrinos

Clearly a crucial test of the dark matter production mechanism discussed here.

Can they be detected?

Neutrino-electron scattering in dark matter detectors?

[need very large detectors, e.g., DARWIN, ARGO]