Parity Solution to the Strong CP Problem and its Experimental Tests

K.S. Babu
Oklahoma State University

High Energy Theory Seminar
Brookhaven National Lab
July 20, 2023

Outline

- Brief review of the strong CP problem
- Popular solutions to the problem
- Left-right symmetry and the Parity solution
- Model building and phenomenology
- Experimental tests
- Vector-like quarks and leptons
- Neutrino oscillations
- W boson mass shift
- Unitarity of CKM matrix and the "Cabibbo anomaly"
- Conclusions

The Strong CP Problem

- Strong interactions appear to conserve Parity (P) and Time Reversal (T) symmetries, and therefore also $C P$ symmetry. However, QCD Lagrangian admits a source of P and T violation:
$\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}+\theta_{Q C D} \frac{g_{s}^{2}}{32 \pi^{2}} G_{\mu \nu} \tilde{G}^{\mu \nu}+\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q} e^{i \theta_{q} \gamma_{5}}\right) q$
- A chiral rotation on the quark field, $q \rightarrow e^{i \alpha \gamma_{5} / 2} q$, can remove the phase of the quark mass as $\theta_{q} \rightarrow \theta_{q}-\alpha$. Due to the anomalous nature of this rotation, $\theta_{Q C D}$ also changes to $\theta_{Q C D} \rightarrow \theta_{Q C D}+\alpha$
- The parameter

$$
\bar{\theta}=\theta_{Q C D}+\theta_{q}
$$

is invariant, and is physical

- With multiple flavors of quarks, the invariant physical parameter is

$$
\bar{\theta}=\theta_{Q C D}+\operatorname{ArgDet}\left(M_{Q}\right)
$$

- $\bar{\theta}$ contributes to neutron Electric dipole moment (EDM)

Neutron EDM from $\overline{\boldsymbol{\theta}}$

- In presence of $\bar{\theta}$ neutron will develop and EDM:

$$
d_{n} \simeq \frac{e \bar{\theta} g_{A} c_{+} \mu}{8 \pi^{2} f_{\pi}^{2}} \log \left(\frac{\Lambda^{2}}{m_{\pi}^{2}}\right) \simeq 3 \times 10^{-16} \bar{\theta} \mathrm{e} \mathrm{~cm}
$$

Here $\mu=\frac{m_{u} m_{d}}{m_{u}+m_{d}}, g_{A} \simeq 1.27, c_{+} \simeq 1.6, \Lambda=4 \pi f_{\pi}$

- From $d_{n}<1.8 \times 10^{-26} \mathrm{e} \mathrm{cm}$, one obtains $\Rightarrow \bar{\theta}<10^{-10}$
- The extreme smallness of $\bar{\theta}$, a dimensionless parameter, is the strong CP problem
- Setting $\bar{\theta}$ to zero is unnatural, since weak interactions require $\mathcal{O}(1)$ CP violation in that sector

Popular Solutions to the Strong CP Problem

- Massless up quark: Since

$$
\bar{\theta}=\theta_{Q C D}+\operatorname{Arg} \operatorname{Det}\left(M_{Q}\right),
$$

chiral rotations on any massless quark can remove it

- $m_{u}=0$ is inconsistent with experimental data as well as lattice calculations
- Peccei-Quinn symmetry and the axion: Here $\bar{\theta}$ is promoted to a dynamical field. The potential for this field relaxes $\bar{\theta}$ to zero.
- An anomalous $U(1)_{P Q}$ symmetry is imposed, which is spontaneously broken as well explicitly broken by the QCD anomaly
- The effecitve interaction of the axion is given by

$$
\mathcal{L} \supset\left(\frac{a}{f_{a}}+\theta\right) \frac{1}{32 \pi^{2}} G \tilde{G}
$$

- Parity solution: Since $\theta_{Q C D}$ is odd under P, the strong P problem can be solved in P-symmetric theories without needing the axion

Parity Solution to the Strong P Problem

- Imagine Parity is spontaneously broken. \Rightarrow

$$
\theta_{Q C D}=0 \text { by Parity. }
$$

- If the quark mass matrix is hermitian, also by Parity, then $\bar{\theta}=0$ at tree-level.
- Quantum corrections could induce small nonzero $\bar{\theta}$.
- In left-right symmetric models, Parity symmetry is exact, with

$$
q_{L} \leftrightarrow q_{R}, \quad \Phi \leftrightarrow \Phi^{\dagger}
$$

- Consequently, the Yukawa coupling $\left(Y_{q} \bar{q}_{L} \Phi q_{R}\right)$ is hermitian:

$$
Y_{q}=Y_{q}^{\dagger}
$$

- However, the quark mass matrix is

$$
M_{q}=Y_{q}\langle\Phi\rangle
$$

- It is a challenge to make the VEVs of Φ real.
- Initial attempts used discrete symmetries to achieve this goal. Mohapatra, Senjanovic (1978), Beg, Tsao (1978)

Left-Right Symmetric Models

- Gauge symmetry is extended to:

$$
S U(3)_{c} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L}
$$

Pati, Salam (1974); Mohapatra, Pati (1975); Mohapatra, Senjanovic (1979)

- Fermions transform in a left-right symmetric manner:

$$
\begin{array}{ll}
Q_{L}(3,2,1,1 / 3)=\binom{u_{L}}{d_{L}}, & Q_{R}(3,1,2,1 / 3)=\binom{u_{R}}{d_{R}} \\
\Psi_{L}(1,2,1,-1)=\binom{\nu_{L}}{e_{L}}, \quad \Psi_{R}(1,1,2,-1)=\binom{\nu_{R}}{e_{R}}
\end{array}
$$

- Note the natural appearance of the right-handed neutrino, leading to small neutrino masses
- In standard LR theories, 3 types of Higgs fields are employed:

$$
\Phi(1,2,2,0)=\left(\begin{array}{cc}
\phi_{1}^{0} & \phi_{2}^{+} \\
\phi_{1}^{-} & \phi_{2}^{0}
\end{array}\right), \Delta_{L, R}(1,3(1), 1(3), 2)=\left(\begin{array}{cc}
\delta^{+} / \sqrt{2} & \delta^{++} \\
\delta^{0} & -\delta^{+} / \sqrt{2}
\end{array}\right)_{L, R}
$$

- Φ generates quark and lepton masses, $\Delta_{L, R}$ generate Majorana neutrino masses. Δ_{R} also breaks $S U(2)_{R}$ symmetry

Parity Solution to the Strong P Problem

- Parity symmetry can now be defined, under which

$$
Q_{L} \leftrightarrow Q_{R}, \quad \Psi_{L} \leftrightarrow \Psi_{R}, \quad \Phi \rightarrow \Phi^{\dagger}, \quad \Delta_{L} \leftrightarrow \Delta_{R}
$$

- Gauge fields transform under P as:

$$
\begin{aligned}
& \quad G_{\mu}^{a}(t, x) \rightarrow G_{\mu}^{a}(t,-x) \times s_{\mu}, \quad B_{\mu}(t, x) \rightarrow B_{\mu}(t,-x) \times s_{\mu} \\
& W_{L, \mu}^{a}(t, x) \rightarrow W_{R, \mu}^{a}(t,-x) \times s_{\mu}, \quad W_{R, \mu}^{a}(t, x) \rightarrow W_{L, \mu}^{a}(t,-x) \times s_{\mu} \\
& \text { where } s_{\mu}=1(\mu=0),=-1(\mu=1,2,3)
\end{aligned}
$$

- Owing to this symmetry, $\theta_{Q C D}=0$
- Yukawa coupling matrices of quarks are hermitian also by P. Quark mass matrix is however not hermitian, since the $\langle\Phi\rangle$ is complex
- The Higgs potential of the standard left-right symmetric model has a single complex coupling ($\tilde{\Phi}=\tau_{2} \Phi^{*} \tau_{2}$):

$$
V \supset\left\{\alpha_{2} e^{i \delta_{2}}\left[\operatorname{Tr}\left(\tilde{\Phi} \Phi^{\dagger}\right) \operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\Phi}^{\dagger} \Phi\right) \operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)\right]+\text { h.c. }\right\}
$$

- For nonzero phase δ_{2}, the VEVs of Φ would develop a relative phase of order one, spoiling the Parity solution to strong CP problem.

SUSY-Assistance to the Strong P Problem

- Supersymmetric Higgs sector would not admit such cross couplings in the potential, and could lead to real VEVs of Φ
- Several SUSY models have been constructed within left-right symmetry that solves the strong P problem

Kuchimanchi (1996); Mohapatra, Rasin (1996); Mohapatra, Rasin, Senjanovic (1997); Babu, Dutta, Mohapatra (2002)

- Explicit SUSY LR models assume two copies of $\Phi(1,2,2,0)$ fields to generate CKM mixing angles
- If the theory has two hermitian flavor matrices Y_{u} and Y_{d}, and if all flavor singlets are real, the lowest order contribution to $\bar{\theta}$ would arise from:

$$
c_{1} \operatorname{Im} \operatorname{Tr}\left(Y_{u}^{2} Y_{d}^{4} Y_{u}^{4} Y_{d}^{2}\right)+c_{2} \operatorname{Im} \operatorname{Tr}\left(Y_{d}^{2} Y_{u}^{4} Y_{d}^{4} Y_{u}^{2}\right)
$$

SUSY and the Strong P Problem

- In SUSY LR models with two copies of $\Phi(1,2,2,0)$, all superpotential parameters are real due to P.
- In these models the coefficients $c_{1,2}$ are of order

$$
c_{1,2} \sim\left(\frac{\ln \left(M_{W_{R}} / M_{W_{L}}\right)}{16 \pi^{2}}\right)^{4}
$$

- They lead to and induced $\bar{\theta}$ of order

$$
\bar{\theta} \sim 3 \times 10^{-27}(\tan \beta)^{6}\left(c_{1}-c_{2}\right)
$$

Babu, Dutta, Mohapatra (2002)

- Argument similar to Eliis, Gaillard (1979) for SM contribution to $\bar{\theta}$
- If for some reason the phase of the quark mass matrix is zero in the Standard Model, it would arise via 7 -loop diagrams, and would remain extremely small.

Solution with P Symmetry Alone

- Parity alone can solve the strong CP problem
- Key point is to go easy with the Higgs sector
- If only an $S U(2)_{L}$ doublet Higgs χ_{L} and an $S U(2)_{R}$ doublet Higgs χ_{R} are used for symmetry breaking, gauge rotations would guarantee that their VEVs are real
- Fermion mass generation is achieved via mixing of the usual fermions with vector-like fermions via χ_{L} and χ_{R}
- This class of left-right symmetric models belong to "universal seesaw" class Davidson, Wali (1987)
- Parity is softly broken by the mass terms of χ_{L} and χ_{R}, which leads to consistent phenomenology
- This setup can solve the strong P problem via parity symmetry alone.

Babu, Mohapatra (1990)

Left-Right Symmetry with Universal Seesaw

- Gauge symmetry is extended to $S U(3)_{c} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{X}$
- These models are motivated on several grounds:
- Provide understanding of Parity violation
- Better understanding of smallness of Yukawa couplings
- Requires right-handed neutrinos to exist
- Provide a solution to the strong CP problem via Parity
- Naturally light Dirac neutrinos may be realized
- Possible relevance to experimental anomalies

Davidson, Wali (1987) - universal seesaw
Babu, He (1989) - Dirac neutrino
Babu, Mohapatra (1990) - solution to strong CP problem via parity
Babu, Dutta, Mohapatra (2018) - $R_{D^{*}}$ solution
Dunsky, Hall, Harigaya (2019) - spontaneous P breaking
Craig, Garcia Garcia, Koszegi, McCune (2020) - flavor constraints
Babu, He, Su, Thapa (2022) - neutrino oscillations with Dirac neutrinos
Harigaya, Wang (2022) - Baryogenesis
Babu, Dcruz (2022) - Cabibbo anomaly, W mass anomaly
Dcruz (2022) - Flavor constraints

Left-Right Symmetry with Small $\bar{\theta}$

- Fermion transformation: $S U(3)_{c} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L}$:

$$
\begin{array}{ll}
Q_{L}(3,2,1,1 / 3)=\binom{u_{L}}{d_{L}}, & Q_{R}(3,1,2,1 / 3)=\binom{u_{R}}{d_{R}}, \\
\Psi_{L}(1,2,1,-1)=\binom{\nu_{L}}{e_{L}}, & \Psi_{R}(1,1,2,-1)=\binom{\nu_{R}}{e_{R}} .
\end{array}
$$

- Vector-like fermions are introduced to realize seesaw for charged fermion masses:

$$
P(3,1,1,4 / 3), \quad N(3,1,1,-2 / 3), \quad E(1,1,1,-2) .
$$

- Higgs sector is very simple:

$$
\chi_{L}(1,2,1,1)=\binom{\chi_{L}^{+}}{\chi_{L}^{0}}, \quad \chi_{R}(1,1,2,1)=\binom{\chi_{R}^{+}}{\chi_{R}^{0}}
$$

- $\left\langle\chi_{R}^{0}\right\rangle=\kappa_{R}$ breaks $S U(2)_{R} \times U(1)_{X}$ down to $U(1)_{Y}$, and $\left\langle\chi_{L}^{0}\right\rangle=\kappa_{L}$ breaks the electroweak symmetry with $\kappa_{R} \gg \kappa_{L}$

Seesaw for Charged Fermion Masses

- Yukaw interactions:

$$
\begin{aligned}
\mathcal{L} & =y_{u}\left(\bar{Q}_{L} \tilde{\chi}_{L}+\bar{Q}_{R} \tilde{\chi}_{R}\right) P+y_{d}\left(\bar{Q}_{L} \chi_{L}+\bar{Q}_{R} \chi_{R}\right) N \\
& +y_{\ell}\left(\bar{\Psi}_{L \chi_{L}}+\bar{\Psi}_{R} \chi_{R}\right) E+\text { h.c. }
\end{aligned}
$$

- Vector-like fermion masses:

$$
\mathcal{L}_{\text {mass }}=M_{p^{0}} \bar{P} P+M_{N^{0}} \bar{N} N+M_{E^{0}} \bar{E} E
$$

- Seesaw for charged fermion masses:

$$
M_{F}=\left(\begin{array}{cc}
0 & y \kappa_{L} \\
y^{\dagger} \kappa_{R} & M
\end{array}\right) \Rightarrow m_{f}=\frac{y^{2} \kappa_{L} \kappa_{R}}{M}
$$

- Under Parity, fields transform as:

$$
Q_{L} \leftrightarrow Q_{R}, \quad \Psi_{L} \leftrightarrow \Psi_{R}, \quad F_{L} \leftrightarrow F_{R}, \quad \chi_{L} \leftrightarrow \chi_{R}
$$

Consquently $M_{F^{0}}=M_{F^{0}}^{\dagger}$

- $\theta_{Q C D}=0$ due to Parity; $\operatorname{ArgDet}\left(M_{U} M_{D}\right)=0$; induced $\bar{\theta}=0$ at one-loop; small and finite $\bar{\theta}$ arises at two-loop

Vanishing $\bar{\theta}$ at one-loop

- Correction to the quark mass matrix:

$$
\mathcal{M}_{U}=\mathcal{M}_{U}^{0}(1+C)
$$

- $\bar{\theta}$ is given by

$$
\bar{\theta}=\operatorname{Arg} \operatorname{Det}(1+C)=\operatorname{Im} \operatorname{Tr}(1+C)=\operatorname{Im} \operatorname{Tr} C_{1}
$$

where a loop-expansion is used:

$$
C=C_{1}+C_{2}+\ldots
$$

- The corrected mass matrix has a form:

$$
\delta \mathcal{M}_{U}=\left[\begin{array}{ll}
\delta M_{L L}^{U} & \delta M_{L H}^{U} \\
\delta M_{H L}^{U} & \delta M_{H H}^{U}
\end{array}\right]
$$

- From here $\bar{\theta}$ can be computed to be:
$\bar{\theta}=\operatorname{Im} \operatorname{Tr}\left[-\frac{1}{\kappa_{L} \kappa_{R}} \delta M_{L L}^{U}\left(Y_{U}^{\dagger}\right)^{-1} M_{U} Y_{U}^{-1}+\frac{1}{\kappa_{L}} \delta M_{L H}^{U} Y_{U}^{-1}+\frac{1}{\kappa_{R}} \delta M_{H L}^{U}\left(Y_{U}^{\dagger}\right)^{-1}\right]$.

Feynman Diagrams for induced $\overline{\boldsymbol{\theta}}$

(a)

(c)

(d)

(e)

(f)

(h)

- Each diagram separately gives zero contribution to $\bar{\theta}$
- Induced value of $\bar{\theta}$ at two-loop is of order 10^{-11}
- Such a cancellation is not easy to achieve. For e.g., this typically does not occur in Nelson-Barr type models which utilize CP symmetry

Quality of the P Solution

- Quantum gravity is expected to violate all global symmetries, including Parity
- Leading Planck-scale induced correction to $\bar{\theta}$ arises from

$$
\mathcal{L}^{d=5}=\frac{1}{M_{\mathrm{Pl}}}\left(\bar{Q}_{L} Q_{R}\right) \chi_{R}^{\dagger} \chi_{L} .
$$

Since this term is not expected to be Parity-symmetric, the resulting quark mass matrix is non-hermitian. If $M_{W_{R}} \leq 10^{5} \mathrm{GeV}$, however, the induced $\bar{\theta}$ from here is $<10^{-10}$

- Contrast with the quality of axion, where a Planck induced operator $c S^{5} / M_{P 1}$ should have the coefficient $c \leq 10^{-34}$ (or else $\bar{\theta}$ will shift away from zero by more than 10^{-10})
- P solution prefers low mass W_{R}, which may be experimentally probed

Matter Content from $\operatorname{SU}(5)_{L} \times S U(5)_{R}$

- All left-handed SM fermions are in $\{(10,1)+(\overline{5}, 1)\}$, while all right-handed SM fermions are in $\{(1,10)+(1, \overline{5})\}$
- There is ν_{R} in the theory, but no seesaw for neutrino sector
- Small Dirac neutrino masses arise as two-loop radiative corrections
- We have evaluated the flavor structure of the two-loop diagrams and shown consistency with neutrino data

Unification of Gauge Couplings

Babu, Mohapatra, Thapa (ongoing)

Roadmap for Neutrino Models

Dirac Neutrino Models

- Neutrinos may be Dirac particles without lepton number violation
- Oscillation experiments cannot distinguish Dirac neutrinos from Majorana neutrinos
- Spin-flip transition rates (early universe, stars) are suppressed by small neutrino mass:

$$
\Gamma_{\text {spin-flip }} \approx\left(\frac{m_{\nu}}{E}\right)^{2} \Gamma_{\text {weak }}
$$

- Neutrinoless double beta decay discovery would establish neutrinos to be Majorana particles
- If neutrinos are Dirac, it would be nice to understand the smallness of their mass
- Models exist which explain the smallness of Dirac m_{ν}
- "Dirac leptogenesis" can explain baryon asymmetry

Dick, Lindner, Ratz, Wright (2000)

Dirac Seesaw Models

- Dirac seesaw can be achieved in Mirror Models

Lee, Yang (1956); Foot, Volkas (1995); Berezhiani, Mohapatra (1995), Silagadze(1997)

- Mirror sector is a replica of Standard Model, with new particles transforming under mirror gauge symmetry:

$$
L=\binom{\nu}{e}_{L} ; \quad H=\binom{H^{+}}{H^{0}} ; \quad L^{\prime}=\binom{\nu^{\prime}}{e^{\prime}}_{L} ; \quad H^{\prime}=\binom{H^{\prime}+}{H^{\prime 0}}
$$

- Effective dimension-5 operator induces small Dirac mass:

- B-L may be gauged to suppress Planck-induced Weinberg operator $(L L H H) / M_{\text {Pl }}$ that would make neutrino pseudo-Dirac particle

Naturally Light Dirac Neutrinos

- Higgs sector is very simple: $\chi_{L}(1,2,1,1 / 2)+\chi_{R}(1,1,2,1 / 2)$
- $W_{L}^{+}-W_{R}^{+}$mixing is absent at tree-level in the model
- $W_{L}^{+}-W_{R}^{+}$mixing induced at loop level, which in turn generates Dirac neutrino mass at two loop Babu, He (1989)

- Flavor structure of two loop diagram needs to be studied to check consistency
- Oscillation date fits well within the model regardless of Parity breaking scale Babu, He, Su, Thapa (2022)

Loop Integrals

$$
\begin{align*}
& M_{\nu^{D}}=\frac{-g^{4}}{2} y_{t}^{2} y_{b}^{2} y_{\ell}^{2} \kappa_{L}^{3} \kappa_{R}^{3} \frac{r M_{P} M_{N} M_{E_{\ell}}}{M_{W_{L}}^{2} M_{W_{R}}^{2}} I_{E_{\ell}} \\
& I_{E_{\ell}}= \iint \frac{d^{4} k d^{4} p}{(2 \pi)^{8}} \frac{3 M_{W_{L}}^{2} M_{W_{R}}^{2}+\left(p^{2}-M_{W_{L}}^{2}\right)\left(p^{2}-M_{W_{R}}^{2}\right)}{k^{2}(p+k)^{2}\left(k^{2}-M_{N}^{2}\right)\left((p+k)^{2}-M_{p}^{2}\right) p^{2}\left(p^{2}-M_{E_{\ell}}^{2}\right)\left(p^{2}-M_{W_{L}}^{2}\right)\left(p^{2}-M_{W_{R}}^{2}\right)} \\
& G_{1}= \frac{3}{\left(r_{3}-1\right)\left(r_{4}-1\right)\left(r_{4}-r_{3}\right)}\left[-\frac{\pi^{2}}{6}\left(r_{1}+r_{2}\right)\left(r_{3}-1\right)\left(r_{3}-r_{4}\right)\left(r_{4}-1\right)\right. \\
&+r_{3} r_{4}\left(r_{4}-r_{3}\right)\left(r_{1} F\left[\frac{1}{r_{1}}, \frac{r_{2}}{r_{1}}\right]+r_{2} F\left[\frac{1}{r_{2}}, \frac{r_{1}}{r_{2}}\right]+F\left[r_{1}, r_{2}\right]\right) \\
&-\left(r_{4}-1\right) r_{4}\left(r_{1} F\left[\frac{r_{3}}{r_{1}}, \frac{r_{2}}{r_{1}}\right]+r_{2} F\left[\frac{r_{3}}{r_{2}}, \frac{r_{1}}{r_{2}}\right]+r_{3} F\left[\frac{r_{1}}{r_{3}}, \frac{r_{2}}{r_{3}}\right]\right) \\
&+\left(r_{3}-1\right) r_{3}\left(r_{1} F\left[\frac{r_{4}}{r_{1}}, \frac{r_{2}}{r_{1}}\right]+r_{2} F\left[\frac{r_{4}}{r_{2}}, \frac{r_{1}}{r_{2}}\right]+r_{4} F\left[\frac{r_{1}}{r_{4}}, \frac{r_{2}}{r_{4}}\right]\right) \tag{-1}\\
&+\left(r_{3}-r_{4}\right)\left(r_{3}-1\right)\left(r_{4}-1\right)\left(r_{2} L i_{2}\left[1-\frac{r_{1}}{r_{2}}\right]+r_{1} L i_{2}\left[1-\frac{r_{2}}{r_{1}}\right]\right) \\
&+r_{3} r_{4}\left(r_{3}-r_{4}\right)\left(L i_{2}\left[1-r_{1}\right]+L i_{2}\left[1-r_{2}\right]+r_{1} L i_{2}\left[\frac{r_{1}-1}{r_{1}}\right]+r_{2} L i_{2}\left[\frac{r_{2}-1}{r_{2}}\right]\right) \\
&+r_{4}\left(r_{4}-1\right)\left(r_{3} L i_{2}\left[1-\frac{r_{1}}{r_{3}}\right]+r_{3} L i_{2}\left[1-\frac{r_{2}}{r_{3}}\right]+r_{1} L i_{2}\left[1-\frac{r_{3}}{r_{1}}\right]+r_{2} L i_{2}\left[1-\frac{r_{3}}{r_{2}}\right]\right) \\
&\left.-r_{3}\left(r_{3}-1\right)\left(r_{4} L i_{2}\left[1-\frac{r_{1}}{r_{4}}\right]+r_{4} L i_{2}\left[1-\frac{r_{2}}{r_{4}}\right]+r_{1} L i_{2}\left[1-\frac{r_{4}}{r_{1}}\right]+r_{2} L i_{2}\left[1-\frac{r_{4}}{r_{2}}\right]\right)\right] .
\end{align*}
$$

Neutrino Fit in Two-loop Dirac Mass Model

Oscillation parameters	3σ range NuFit5. 1	Model prediction			
		BP I (NH)	BP II (NH)	BP 11 I (1H)	BP IV (IH)
$\Delta m_{21}^{2}\left(10^{-5} \mathrm{eV}^{2}\right)$	6.82-8.04	7.42	7.32	7.35	7.30
$\begin{gathered} \Delta m_{23}^{2}\left(10^{-3} \mathrm{eV}^{2}\right)(\mathrm{IH}) \\ \Delta m_{31}^{2}\left(10^{-3} \mathrm{eV}^{2}\right)(\mathrm{NH}) \\ \hline \end{gathered}$	$\begin{gathered} 2.410-2.574 \\ 2.43-2.593 \end{gathered}$	2.49	2.46	2.48	2.52 -
$\sin ^{2} \theta_{12}$	0.269-0.343	0.324	0.315	0.303	0.321
$\begin{aligned} & \sin ^{2} \theta_{23}(\mathrm{IH}) \\ & \sin ^{2} \theta_{23}(\mathrm{NH}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.410-0.613 \\ & 0.408-0.603 \end{aligned}$	0.491	0.452	0.542	0.475
$\begin{aligned} & \sin ^{2} \theta_{13}(\mathrm{IH}) \\ & \sin ^{2} \theta_{13}(\mathrm{NH}) \end{aligned}$	$\begin{aligned} & \hline 0.02055-0.02457 \\ & 0.02060-0.02435 \end{aligned}$	0.0234	0.0223	0.0230	0.0234
$\begin{aligned} & \delta_{\mathrm{CP}}(\mathrm{IH}) \\ & \delta_{\mathrm{CP}}(\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 192-361 \\ & 105-405 \end{aligned}$	199°	200°		296°
$m_{\text {light }}\left(10^{-3}\right) \mathrm{eV}$		0.66	0.17	0.078	4.95
$M_{E_{1}} / M_{W_{R}}$		917	321.3	639	3595
$M_{E_{2}} / M_{W_{R}}$		0.650	19.3	1.54	5.03
$M_{E_{3}} / M_{W_{R}}$		0.019	1.26	0.054	2.94

- Ten parameters to fit oscillation data
- Both normal ordering and inverted ordering allowed
- Dirac CP phase is unconstrained
- Left-right symmetry breaking scale is not constrained

Tests with $N_{\text {eff }}$ in Cosmology

- Dirac neutrino models of this type will modify $N_{\text {eff }}$ by about 0.14

$$
\begin{aligned}
\Delta N_{\text {eff }} & \simeq 0.027\left(\frac{106.75}{g_{\star}\left(T_{\text {dec }}\right)}\right)^{4 / 3} g_{\text {eff }} \\
g_{\text {eff }} & =(7 / 8) \times(2) \times(3)=21 / 4
\end{aligned}
$$

- Can be tested in CMB measurements: $N_{\text {eff }}=2.99 \pm 0.17$ (Planck+BAO)

$$
\begin{gathered}
G_{F}^{2}\left(\frac{M_{W_{L}}}{M_{W_{R}}}\right)^{4} T_{\text {dec }}^{5} \approx \sqrt{g^{*}\left(T_{\text {dec }}\right)} \frac{T_{\text {dec }}^{2}}{M_{\mathrm{Pl}}} \\
T_{\text {dec }} \simeq 400 \mathrm{MeV}\left(\frac{g_{*}\left(T_{\text {dec }}\right)}{70}\right)^{1 / 6}\left(\frac{M_{W_{R}}}{5 \mathrm{TeV}}\right)^{4 / 3}
\end{gathered}
$$

- Present data sets a lower limit of 7 TeV on W_{R} mass

Pseudo-Dirac Neutrinos

- In any model with Dirac neutrinos, quantum gravity corrections could induce tiny Majorana masses via Weinberg operator
- The active-sterile neutrino mass splitting should obey $\left|\delta m^{2}\right|<10^{-12}$ eV^{2} from solar neutrino data - de Gouvea, Huang, Jenkins (2009)
- $B-L$ may be gauged in rder to control the small amount of Majorana mass. ($L L H H / M_{\mathrm{Pl}}$) won't be allowed due to $B-L$, but $(L L H H \varphi) / M_{\text {PI }}^{2}$ may be allowed - if φ has $B-L$ of +2
- In the current model $\left(\psi_{R} \psi_{R} \chi_{R} \chi_{R}\right) / M_{\mathrm{PI}}$ is more important (if allowed), but $B-L$ gauging could forbid this operator, but may permit $\left(\psi_{R} \psi_{R} \chi_{R} \chi_{R} \varphi\right) / M_{\mathrm{Pl}}^{2}$
- Pseud-Dirac nature of neutrinos may be tested with high energy astrophysical neutrinos via (L / E)-dependent flavor ratios Beacom, Bell, Hooper, Learned, Pakvasa, Weiler (2003)
- For $\left\langle\chi_{R}\right\rangle \sim\langle\varphi\rangle \sim 10^{5} \mathrm{GeV}, \Delta m^{2} \approx 10^{-16} \mathrm{eV}^{2}$

IceCube Flavor Ratios for Pseudo-Dirac Neutrinos

- Flavor ratio at source from pion decay: $\left(\frac{1}{3}, \frac{2}{3}, 0\right)$
- For Dirac neutrinos these ratios become at detector $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- For pseudo-Dirac neutrinos at the detector we have:

$$
\begin{gathered}
P_{\beta}=\frac{1}{3}+\delta P_{\beta} \\
\delta P_{\beta}=-\frac{1}{3}\left[\left|U_{\beta 1}\right|^{2} \chi_{1}+\left|U_{\beta 2}\right|^{2} \chi_{2}+\left|U_{\beta 3}\right|^{2} \chi_{3}\right] \\
\chi_{j}=\sin ^{2}\left(\frac{\Delta m_{j}^{2} L}{4 E}\right)
\end{gathered}
$$

- NGC 1068 observation at IceCube probes $\delta \mathrm{m}^{2} \sim 10^{-21} \mathrm{eV}^{2}$

Carloni, Martínez-Soler, Argüelles, Babu, Dev (2022)

Anomalies and the P Symmetric Model

- Currently there are several experimental anomalies. The P symmetric model may be relevant to some of these
- Anomalies include:
- Muon $g-2$
- $R_{D}, R_{D^{*}}$ in B decays
- W-boson mass shift
- Cabibbo anomaly
- Not all anomalies find resolution here
- Notably, muon $g-2$ is hard to explain, without further ingredients
- Cabibbo anomaly and W mass shift fit in nicely with testable predictions

Babu, Dcruz (2022)

Explaining the Cabibbo Anomaly

- The first row of the CKM matrix appears to show a 3 sigma deviation from unitarity:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9985(5)
$$

- The sum of the first column also deviates slightly from unity:

$$
\left|V_{u d}\right|^{2}+\left|V_{c d}\right|^{2}+\left|V_{t d}\right|^{2}=0.9970(18)
$$

Suggestive of mixing of up or down-quark with a vector-like quark

- Occurs naturally in the quark seesaw model. However, if the up-quark mixes with a heavy U-quark via

$$
M_{\mathrm{up}}=\left[\begin{array}{cc}
0 & y_{u} \kappa_{L} \\
y_{u}^{*} \kappa_{R} & M_{U}
\end{array}\right],
$$

$u_{L}-U_{L}$ mixing is too small, suppressed by u-quark mass.

- This is a consequence of Parity symmetry

Explaining the Cabibbo Anomaly (cont.)

- A way out: Mix down-quark with two of the D-quarks:

$$
M_{\mathrm{do}}=\left[\begin{array}{ccc}
0 & y_{d} \kappa_{L} & 0 \\
y_{d}^{*} \kappa_{L} & M_{1} & M_{2} \\
0 & M_{2} & 0
\end{array}\right]
$$

- In this case large value of $y_{d} \kappa_{L} \sim 200 \mathrm{GeV}$ is allowed, without generating large u-quark mass. Note: $\operatorname{Det}\left(M_{\text {do }}\right)=0$
- Assume CKM angles arise primarily from down sector. Then the full 5×3 CKM matrix spanning (u, c, t) and (d, s, b, D_{1}, D_{2}) is:

$$
V_{C K M}^{T}=\left[\begin{array}{ccc}
c_{L} V_{u d} & c_{L} V_{u s} & c_{L} V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b} \\
-s_{L} s_{L}^{\prime} V_{u d} & -s_{L} s_{L}^{\prime} V_{u s} & -s_{L} s_{L}^{\prime} V_{u b} \\
-s_{L} c_{L}^{\prime} V_{u d} & -s_{L} c_{L}^{\prime} V_{u s} & -s_{L} c_{L}^{\prime} V_{u b}
\end{array}\right]
$$

- $s_{L}=0.0387$ explains the apparent unitarity violation

Consistency with other constraints

- In order to get $s_{L}=0.0387$, one of the U-quark mass should be below 5 TeV .
- Owing to the $d_{L}-D_{L}$ mixing, Z coupling to u_{L} is modified to

$$
\left(\frac{g}{c_{W}}\right)\left(-\frac{1}{2}+\frac{1}{3} s_{W}^{2}-\frac{s_{L}^{2}}{2}\right)
$$

- This shifts the Z hadronic width by about 1 MeV , which is consistent. The total Z width has an uncertainty of 2.3 MeV .
- There are no FCNC induced by Z boson at tree-level. The box diagram contribution to $K-\bar{K}$ mixing gets new contributions from VLQ, which is a factor of few below experimental value.
- Di-Higgs production via t-channel exchange of U quark is a possible way to test this model at LHC.

Explaining the W boson mass shift

- CDF collaboration recently reported a new measurement of W boson mass that is about 7 sigma away from SM prediction:

$$
M_{W}^{\mathrm{CDF}}=(80,433.5 \pm 9.4) \mathrm{MeV}, \quad M_{W}^{\mathrm{SM}}=(80,357 \pm 6) \mathrm{MeV}
$$

- Vector-like quark that mixes with SM quark can modify T, S, U parameters. This occurs in the quark seesaw model
- Needed mixing between SM quark and VLQ is or order 0.15. $t-T$ mixing alone won't suffice, as it is constrained by top mass.
- t-quark mixing with two VLQs with the mixing angle of order 0.15 can consistently explain the W mass anomaly
- Source of custodial $S U(2)$ violation is the $t_{L}-U_{L}$ mixing
- Mixing of light quarks with VLQs cannot explain the anomaly, since these mixings are constrained by Z hadronic width

W boson mass shift

- $\left(t, U_{2}, U_{3}\right)$ mass matrix:

$$
M_{u p}=\left(\begin{array}{ccc}
0 & 0 & y_{t} \kappa_{L} \\
0 & m & M_{1} \\
y_{t} \kappa_{R} & M_{1} & M_{2}
\end{array}\right)
$$

- $m_{t} \rightarrow 0$ approximation is realized with $m \rightarrow 0$
- In the simplified verions with $M_{2}=0$, the oblique T-parameter is:

$$
T=\frac{N_{c} M_{T}^{2} s_{L}^{4}}{16 \pi s_{W}^{2} m_{W}^{2}}
$$

Lavoura, Silva (1993); Dawson, Furlan (2012); Chen, Dawson, Furlan (2017)

- $t_{L}-U_{L}$ mixing angle s_{L} is contrained from $\left|V_{t d}\right|$ measurement to be $\left|s_{L}\right|<0.17$
- $T=0.16$ is obtained for $M_{T}=2.1 \mathrm{TeV} . T=\{0.15,0.26\}$ needed to explain W mass shift implies $M_{T}=\{2.1,2.6\} \mathrm{TeV}$

Generalized Expressions for T

$$
\begin{aligned}
T & =\frac{N_{c}}{16 \pi s^{2} M_{W}^{2}}\left[\left(u_{11}^{4}-1\right) m_{t}^{2}+\left(u_{21}^{4} M_{U_{2}}^{2}+u_{31}^{4} M_{U_{3}}^{2}\right)\right. \\
& +2\left\{u_{11}^{4}-1+m_{t}^{2}\left(\frac{1-u_{11}^{2}}{m_{t}^{2}-m_{b}^{2}}-\frac{u_{11}^{2} u_{21}^{2}}{M_{U_{2}}^{2}-m_{t}^{2}}-\frac{u_{11}^{2} u_{31}^{2}}{M_{U_{3}}^{2}-m_{t}^{2}}\right)\right\} m_{t}^{2} \ln \left[\frac{m_{t}^{2}}{M_{U_{3}}^{2}}\right] \\
& +2 u_{21}^{2}\left\{u_{21}^{2}+M_{U_{2}}^{2}\left(-\frac{1}{M_{U_{2}}^{2}-m_{b}^{2}}+\frac{u_{11}^{2}}{M_{U_{2}}^{2}-m_{t}^{2}}-\frac{u_{31}^{2}}{M_{U_{3}}^{2}-M_{U_{2}}^{2}}\right)\right\} M_{U_{2}}^{2} \ln \left[\frac{M_{U_{2}}^{2}}{M_{U_{3}}^{2}}\right] \\
& \left.+2\left\{\frac{u_{21}^{2}+u_{31}^{2}}{m_{t}^{2}-m_{b}^{2}}-\frac{u_{21}^{2}}{M_{U_{2}}^{2}-m_{b}^{2}}-\frac{u_{31}^{2}}{M_{U_{3}}^{2}-m_{b}^{2}}\right\} m_{b}^{4} \ln \left[\frac{m_{b}^{2}}{M_{U_{3}}^{2}}\right]\right],
\end{aligned}
$$

$u_{i j}$ refer to the mixing matrix entries of U that diagoanlizes the 3×3 up-quark mass matrix

T Parameter vs VLQ Mass

Babu, Dcruz (2022)

M_{W} and VLQ Mass

Conclusions

- Strong CP problem is a strong indication for physics beyond the Standard Model
- Parity Symmetry alone can solve the problem. This is an alternative to the axion solution
- BSM theory should be left-right symmetric, so that P can be defined
- Models where P alone can solve the strong CP problem have a variety of testable consequences
- A second Higgs field and vector-like fermions are characteristics of these theories
- Dirac neutrinos, possibility of non-unitary CKM matrix, and a modified W boson mass can arise in these models
- Neutron EDM cannot be too small compared to experimental limits

