

Lukáš Gráf

UC Berkeley & UC San Diego

BNL, July 2023

Lepton Number

- non-perturbative SM dynamics: B + L number violated by sphalerons
- B L number is conserved ↔ non-anomalous global symmetry of the SM
 - \rightarrow acc
 - to B –
- the ma physic

a relict! \rightarrow violation at low energies subtle \leftrightarrow corresponding lige symmetry broken at certain high-energy scale

perimentally accessible scales suppressed by powers of the new-

• tightly related to the puzzle of neutrino masses and baryon asymmetry of the Universe

How to Probe the v Physics?

plethora of models for Majorana neutrino mass generation

High-scale	Low-scale
 new particles decoupled 	 new particles within reach of experiments
 theoretically natural neutrino Yukawa 	 small neutrino Yukawa, loop suppression,
 vanilla scenario of the high-scale 	approximate LNC
leptogenesis	 resonant leptogenesis, via oscillations …

What strategy to adopt to probe all the different scenarios? Effective Field Theory

robust, model independent approach

limitations: e. g. resonant production **simplified** models

LNV in Effective Field Theory

O. Scholer, J. de Vries, LG: 2304.05415

*NG3AS Network for Neutrinos, Nuclear Astrophysics, and Symmetries

Double Beta Decays

- two-neutrino double beta decay $2\nu\beta\beta: (A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$
- neutrinoless double beta decay \rightarrow LNV, mediated by Majorana neutrinos $0\nu\beta\beta: (A, Z) \rightarrow (A, Z + 2) + 2e^{-}$
- experiments: $T_{1/2}^{2\nu\beta\beta} \sim 10^{18} 10^{21} \text{ y}$ $T_{1/2}^{0\nu\beta\beta} \sim (0.1 \text{ eV}/m_{\nu})^2 \times 10^{26} \text{ y}$

KamLAND-Zen, LEGEND, CUORE, NEMO-3, CUPID, (n)EXO, ...

- a variety of isotopes: ⁷⁶Ge, ¹³⁶Xe, ...
- variants: $0\nu\beta^+\beta^+$: $(A,Z) \to (A,Z-2) + 2e^+$ $0\nu\beta^+EC$: $(A,Z) + e^- \to (A,Z-2) + e^+$ $0\nu ECEC$: $(A,Z) + 2e^- \to (A,Z-2)$

lukas.graf@berkeley.edu

Exotic (2v)ββ Decay

• double beta decay in presence of right-handed currents?

 $\rightarrow \text{Lagrangian:} \quad \mathcal{L} = \frac{G_F \cos \theta_C}{\sqrt{2}} \left((1 + \delta_{\text{SM}} + \epsilon_{LL}) j_L^{\mu} J_{L\mu} + \epsilon_{RL} j_L^{\mu} J_{R\mu} + \epsilon_{LR} j_R^{\mu} J_{L\mu} + \epsilon_{RR} j_R^{\mu} J_{R\mu} \right) + \text{h.c.}$ with $j_{L,R}^{\mu} = \bar{e} \gamma^{\mu} (1 \mp \gamma_5) \nu, \ J_{L,R}^{\mu} = \bar{u} \gamma^{\mu} (1 \mp \gamma_5) d$

- contributions: $d \xrightarrow{G_F} u_{e_L} \\ \overline{\nu}_L \\ d \xrightarrow{\overline{\nu}_L} \\ \frac{G_F}{\overline{\nu}_L} \\ \frac{G_F}{\overline{\nu}_L$
- total rate: $\Gamma^{2\nu} = \epsilon^2_{XR} G_{2\nu\beta\beta} |M_{2\nu\beta\beta}|^2$
- angular correlation: $\frac{\mathrm{d}\Gamma^{2\nu}}{\mathrm{d}\cos\theta} = \frac{\Gamma^{2\nu}}{2} \left(1 + K^{2\nu}\cos\theta\right) \rightarrow \text{bound: } \epsilon_{XR} \lesssim 2.7 \times 10^{-2}$
- using existing NEMO-3 data, insensitive to the overall rate, largely insensitive to the nuclear matrix elements

Neutrinoless Double Beta Decay

lukas.graf@berkeley.edu

New Physics & $0\nu\beta\beta$

- plethora of New Physics scenarios may be responsible for $0\nu\beta\beta$
- left-right symmetric models $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

• R-parity violating SUSY, Majorons, Extra Dimensions ...

F. F. Deppisch, M. Hirsch, H. Päs: J. Phys. G 39 (2012), 124007

Effective Approach to Ονββ

- effectively, a variety of different mechanisms beyond the standard scenario may contribute to 0vββ (e.g. 0303205, 1208.0727, 1708.09390, 1806.02780, 1806.06058, 2009.10119, ...), long-range (with neutrino propagator) and short-range mechanisms
- 0vββ half-life limit sets constraints on effective couplings accurate calculation of nuclear matrix elements and phase-space factors is crucial for estimating these limits

lukas.graf@berkeley.edu

Effective Approach to Ονββ

 effectively, a variety of different mechanisms beyond the standard scenario may contribute to 0vββ (e.g. 0303205, 1208.0727, 1708.09390, 1806.02780, 1806.06058, 2009.10119, ...), long-range (with neutrino propagator) and short-range mechanisms

Ονββ Mechanisms

- standard mass mechanism • $\Gamma_{m_{\nu}}^{0\nu\beta\beta} \sim m_{\nu}^2 G_F^4 m_F^2 Q_{\beta\beta}^5 \sim \left(\frac{m_{\nu}}{0.1 \text{ oV}}\right)^2 (10^{26} \text{ y})^{-1}$ non-standard long-range mechanisms $\Gamma_{\rm LR}^{0\nu\beta\beta} \sim v^2 \Lambda_{O_7}^{-6} G_F^2 m_F^4 Q_{\beta\beta}^5 \sim \left(\frac{10^5 \text{ GeV}}{\Lambda_O}\right)^6 (10^{26} \text{ y})^{-1}$ non-standard short-range mechanisms u• $\Gamma_{\rm SR}^{0\nu\beta\beta} \sim \Lambda_{O_9}^{-10} m_F^6 Q_{\beta\beta}^5 \sim \left(\frac{5 \text{ TeV}}{\Lambda_O}\right)^{10} (10^{26} \text{ y})^{-1}$ • due to the intrinsic helicity flip, non-standard long-range mechanisms in typical scenarios suppressed indirectly by neutrino mass
- e.g. left-right symmetric models: small Yukawa coupling $(y_{\nu}v = \sqrt{m_{\nu}M_N})^{\Gamma_{LR}^{0\nu\beta\beta}} \sim \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right) \left(\frac{5 \text{ TeV}}{\Lambda_{LR}}\right)^5 (10^{26} \text{ y})^{-1}$

Unraveling the Lepton Number Violation

Nuclear Uncertainties

- hadronic currents $J^{\mu}(q) = g_V \gamma^{\mu} g_A \gamma^{\mu} \gamma^5 + \frac{ig_W}{2m_N} \sigma^{\mu\nu} q_{\nu} g_P \gamma^5 q^{\mu}$
- non-relativistic expansion \rightarrow nuclear matrix elements $\mathcal{M}_{0\nu} = g_A^2 \mathcal{M}_{GT} - g_V^2 \mathcal{M}_F + g_A^2 \mathcal{M}_T$ $\mathcal{M}_F = \langle h^F(q^2) \rangle$ $\mathcal{M}_{GT} = \langle h^{GT}(q^2)(\sigma_a \cdot \sigma_b) \rangle$ $\mathcal{M}_T = \langle h^T(q^2)3(\sigma_a \cdot r_{ab})(\sigma_b \cdot r_{ab}) - (\sigma_a \cdot \sigma_b) \rangle$ 16
- dependence on isotope and operator
- non-relativistic approx. or chiral EFT
- calculation many-body problem
- different nuclear structure models, factor of 2-3 difference
- + unknown LECs (or form factors)

Α

 $\mathcal{M}_{0\nu}$

Distinguishing 0vßß Mechanisms

- phase-space observables electron energy spectra, angular correlation $\frac{d\Gamma}{d\cos\theta d\tilde{\epsilon}_1} = a_0 \left(1 + \frac{a_1}{a_0}\cos\theta\right)$
- comparison with other $\beta\beta$ modes $\rightarrow \beta+\beta+$, EC $\beta+$, ECEC typically suppressed
- decay rate ratios for different isotopes $\mathrm{R}^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X}) \equiv \frac{T_{1/2}^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X})}{T_{1/2}^{\mathcal{O}_i}(^{76}\mathrm{Ge})} = \frac{|\mathcal{M}^{\mathcal{O}_i}(^{76}\mathrm{Ge})|^2 G^{\mathcal{O}_i}(^{76}\mathrm{Ge})}{|\mathcal{M}^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X})|^2 G^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X})}$
 - → ratio of half-lives = ratio of NMEs x ratio of PSFs, the unknown coupling drops out
 - distinguishing 2 specific operators quantified using $R_{ij}(^{A}X) = \frac{R^{O_{i}}(^{A}X)}{R^{O_{j}}(^{A}X)}$
- applied to the "master formula" framework of 1806.02780

V. Cirigliano, W. Dekens, J. de Vries, M.L. Graesser, E. Mereghetti: JHEP 12 [1806.02780]

- $PSFs \rightarrow 4$ distinguishable groups of operators
- ratios: in principle 12 distinguishable groups of operators
 - main issues: nuclear uncertainties: NMEs + unknown low energy constants
 → solution? hopefully: ab initio + LQCD and/or complementarity

Distinguishing: Phase Space

- electron energy spectra and angular correlation of the emitted electrons $\frac{d\Gamma}{d\cos\theta d\tilde{\epsilon}_1} = a_0 \left(1 + \frac{a_1}{a_0}\cos\theta\right)$
- e.g. NEMO-3: thin foils of source material surrounded by a separate tracking calorimeter → better accuracy – reliable detection of 2 electrons coming from the same spot

AS Network for Neutrinos, Nuclear Astrophysics, and Symmetries

Distinguishing: Half-life Ratios

• distingushing pairs of operators $R_{ij}(^{A}X) = \frac{R^{\mathcal{O}_{i}}(^{A}X)}{R^{\mathcal{O}_{j}}(^{A}X)}$

$$\mathbf{R}^{\mathcal{O}_i}(^{\mathbf{A}}\mathbf{X}) \equiv \frac{T_{1/2}^{\mathcal{O}_i}(^{\mathbf{A}}\mathbf{X})}{T_{1/2}^{\mathcal{O}_i}(^{76}\mathrm{Ge})} = \frac{|\mathcal{M}^{\mathcal{O}_i}(^{76}\mathrm{Ge})|^2 G^{\mathcal{O}_i}(^{76}\mathrm{Ge})}{|\mathcal{M}^{\mathcal{O}_i}(^{\mathbf{A}}\mathbf{X})|^2 G^{\mathcal{O}_i}(^{\mathbf{A}}\mathbf{X})}$$

- most importantly: exotic contribution beyond mass mechanism?
- variation of the unknown LECs gives the spread in values
- \rightarrow look at the central values

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left[C_{\mathrm{VL}}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) + C_{\mathrm{VR}}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) \right. \\ \left. + C_{\mathrm{SL}}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) + C_{\mathrm{SR}}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right) \right. \\ \left. + C_{\mathrm{T}}^{(6)} \left(\overline{u_L} \sigma^{\mu\nu} d_R \right) \left(\overline{e_L} \sigma_{\mu\nu} \nu_L^c \right) \right] + h.c.$$

Distinguishing: Half-life Ratios

▲ ¹⁰⁰Mo • ¹²⁸Te * ¹³⁰Te • ¹³⁴Xe * ¹³⁶Xe * ¹⁵⁰Nd 825e * 116Cd distingushing pairs of operators ullet** $R_{ij}(^{A}X) = \frac{R^{\mathcal{O}_{i}}(^{A}X)}{R^{\mathcal{O}_{j}}(^{A}X)}$ XX log₁₀R^{0;} $\mathbf{R}^{\mathcal{O}_{i}}(^{\mathbf{A}}\mathbf{X}) \equiv \frac{T_{1/2}^{\mathcal{O}_{i}}(^{\mathbf{A}}\mathbf{X})}{T_{1/2}^{\mathcal{O}_{i}}(^{76}\mathrm{Ge})} = \frac{|\mathcal{M}^{\mathcal{O}_{i}}(^{76}\mathrm{Ge})|^{2}G^{\mathcal{O}_{i}}(^{76}\mathrm{Ge})}{|\mathcal{M}^{\mathcal{O}_{i}}(^{\mathbf{A}}\mathbf{X})|^{2}G^{\mathcal{O}_{i}}(^{\mathbf{A}}\mathbf{X})}$ most importantly: exotic contribution beyond mass mechanism? variation of the unknown LECs 010c gives the spread in values $1.4 \frac{150 Nd}{128 Te} 1.6 \frac{76 Ge}{116 Cd}$ \rightarrow best central values: 1.6⁷⁶Ge 116<u>716</u>Cd $2.6 \frac{96 Zr}{150 Nd}$ $1.8 \frac{^{76}Ge}{^{116}Cd} = 1.7 \frac{^{150}Nd}{^{128}Te}$ $4.7\frac{136Xe}{150Ne}$ $1.6 \frac{^{76}Ge}{^{116}Cd}$ $2.4 \frac{96 Zr}{150 Nd}$ 8.1¹³⁴Xe 150Nd $1.8 \frac{1}{128 \tau_{e}}$ m_{BB} $\tilde{C}_V^{(9)}$ $C_{VL}^{(6)}$ $C_{VR}^{(6)}$ $C_{T}^{(6)}$ $C_{S,V}^{(6,7)}$ $C_{51}^{(9)}$ $C_{52}^{(9)}$ $C_{53}^{(9)}$ $C_{54}^{(9)}$ $C_{55}^{(9)}$ $\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left| C_{\mathrm{VL}}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) + C_{\mathrm{VR}}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) \right|$ $\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left[C_{\mathrm{VL}}^{(7)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_L} \overleftrightarrow{\partial}_{\mu} \nu_L^c \right) + C_{\mathrm{VR}}^{(7)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_L} \overleftrightarrow{\partial}_{\mu} \nu_L^c \right) \right] + h.c.$ $+ C_{\rm SL}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) + C_{\rm SR}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right)$ $\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum \left[\left(C_{i,R}^{(9)} \left(\overline{e_R} e_R^c \right) + C_{i,L}^{(9)} \left(\overline{e_L} e_L^c \right) \right) \mathcal{O}_i + C_i^{(9)} \left(\overline{e} \gamma_\mu \gamma_5 e^c \right) \mathcal{O}_i^\mu \right] \right]$ $+ C_{\rm T}^{(6)} \left(\overline{u_L} \sigma^{\mu\nu} d_R \right) \left(\overline{e_L} \sigma_{\mu\nu} \nu_L^c \right) + h.c.$ LG, M. Lindner, O. Scholer: PRD 106 (2022)

Maximizing Half-life Ratios

- largest ratios central values vs. worst-case scenario
- the pair of isotopes producing the largest ratio identified
- shading ↔ distinguishable based on the phase space
- uncertainties crucial, most likely correlated → worst case rather pessimistic

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left[C_{\mathrm{VL}}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) + C_{\mathrm{VR}}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_R} \gamma_{\mu} \nu_L^c \right) \right. \\ \left. + C_{\mathrm{SL}}^{(6)} \left(\overline{u_R} d_L \right) \left(\overline{e_L} \nu_L^c \right) + C_{\mathrm{SR}}^{(6)} \left(\overline{u_L} d_R \right) \left(\overline{e_L} \nu_L^c \right) \right. \\ \left. + C_{\mathrm{T}}^{(6)} \left(\overline{u_L} \sigma^{\mu\nu} d_R \right) \left(\overline{e_L} \sigma_{\mu\nu} \nu_L^c \right) \right] + h.c.$$

 $\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left[C_{\mathrm{VL}}^{(7)} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{e_L} \overleftrightarrow{\partial}_{\mu} \nu_L^c \right) + C_{\mathrm{VR}}^{(7)} \left(\overline{u_R} \gamma^{\mu} d_R \right) \left(\overline{e_L} \overleftrightarrow{\partial}_{\mu} \nu_L^c \right) \right] + h.c.$ $\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_i \left[\left(C_{i,R}^{(9)} \left(\overline{e_R} e_R^c \right) + C_{i,L}^{(9)} \left(\overline{e_L} e_L^c \right) \right) \mathcal{O}_i + C_i^{(9)} \left(\overline{e} \gamma_{\mu} \gamma_5 e^c \right) \mathcal{O}_i^{\mu} \right]$ $\mathsf{LG, M. Lindner, O. Scholer: PRD 106 (2022)$

lukas.graf@berkeley.edu

Unraveling the Lepton Number Violation

Models: mLRSM

- UV scenario: minimal left-right symmetric model $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$
- minor variations for inverted ordering (IO)
- assuming normal ordering (NO) can result in ratios altered more significantly for small minimal neutrino mass
- small ratios ↔ dominance of short-range contributions at χEFT level

Models: Leptoquarks

- considered scenarios give distinguishable spectra
- central values match the case with order-of-magnitude estimates of the LECs
- spread for the full model, SL, VL

 $\mathcal{L}_{LQ} = \left[\bar{e}P_L\nu^c\right] \left\{ \frac{\epsilon_S}{M_S^2} \left[\bar{u}P_Rd\right] + \frac{\epsilon_V}{M_V^2} \left[\bar{u}P_Ld\right] \right\}$ $- \left[\bar{e}\gamma^{\mu}P_L\nu^c\right] \left\{ \left(\frac{\alpha_S^R}{M_S^2} + \frac{\alpha_V^R}{M_V^2}\right) \left[\bar{u}\gamma_{\mu}P_Rd\right] - \sqrt{2} \left(\frac{\alpha_S^L}{M_S^2} + \frac{\alpha_V^L}{M_V^2}\right) \left[\bar{u}\gamma_{\mu}P_Ld\right] \right\} + \text{h.c.},$

M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko (PRD, 1996)

lukas.graf@berkeley.edu

Unraveling the Lepton Number Violation

vDoBe: A Python Tool for $0v\beta\beta$

- user inputs:
 - scale + selection of operators
 - isotope(s), type of NMEs
- data inputs:
 - nuclear matrix elements
 - phase-space factors
 - low-energy constants
- outputs:
 - half-life formula for the given case
 - limits on selected couplings
 - m_{ββ} vs. m_v plots, etc.
 - chosen contour plots showing correlations of different parameters, ...

download: <u>https://github.com/OScholer/nudobe</u> online tool: <u>https://oscholer-nudobe-streamlit-4foz22.streamlit.app/</u>

Unraveling the signal: other probes of LNV?

LNV at Dimension 7 in SMEFT

- let's consider the basis of the 12 dimension-7 $\Delta L = 2$ SMEFT operators
- Lehman PRD (2014) → 20 independent operators (13 conserving B but ΔL = 2 and 7 violating both by one unit, ΔB = -ΔL = -1)
- further reduced in Liao, Ma JHEP (2017) to 18 = 12 + 6 (independent structures)

$$\mathcal{L} = \mathcal{L}_{SM} + C_5 \mathcal{O}_5 + \sum C_7^i \mathcal{O}_7^i + \sum C_9^i \mathcal{O}_9^i + \dots$$

Type	O	Operator
$\Psi^2 H^4$	\mathcal{O}_{LH}^{pr}	$\epsilon_{ij}\epsilon_{mn}ig(\overline{L_p^c}{}^iL_r^mig)H^jH^nig(H^\dagger Hig)$
$\Psi^2 H^3 D$	\mathcal{O}_{LeHD}^{pr}	$\epsilon_{ij}\epsilon_{mn}ig(\overline{L_p^c}{}^i\gamma_\mu e_rig)H^jig(H^miD^\mu H^nig)$
$\Psi^2 H^2 D^2$	\mathcal{O}_{LHD1}^{pr}	$\epsilon_{ij}\epsilon_{mn}ig(\overline{L_p^c}{}^iD_\mu L_r^jig)ig(H^mD^\mu H^nig)$
	\mathcal{O}_{LHD2}^{pr}	$\epsilon_{im}\epsilon_{jn}ig(\overline{L_p^c}{}^iD_\mu L_r^jig)ig(H^mD^\mu H^nig)$
$\Psi^2 H^2 X$	\mathcal{O}_{LHB}^{pr}	$g\epsilon_{ij}\epsilon_{mn}ig(\overline{L^c_p}{}^i\sigma_{\mu u}L^m_rig)H^jH^nB^{\mu u}$
	\mathcal{O}_{LHW}^{pr}	$g'\epsilon_{ij}\left(\epsilon\tau^{I} ight)_{mn}\left(\overline{L_{p}^{c}}^{i}\sigma_{\mu u}L_{r}^{m} ight)H^{j}H^{n}W^{I\mu u}$
$\Psi^4 D$	$\mathcal{O}_{ar{d}uLLD}^{prst}$	$\epsilon_{ij}ig(\overline{d_p}\gamma_\mu u_rig)ig(\overline{L^c_s}{}^iiD^\mu L^j_tig)$
	$\mathcal{O}^{prst}_{ar{e}LLLH}$	$\epsilon_{ij}\epsilon_{mn} \left(\overline{e_p}L_r^i\right) \left(\overline{L_s^c}^j L_t^m\right) H^n$
- 4	$\mathcal{O}_{ar{d}LueH}^{prst}$	$\epsilon_{ij}ig(\overline{d_p}L^i_rig)ig(\overline{u^c_s}e_tig)H^j$
$\Psi^4 H$	$\mathcal{O}_{ar{d}LQLH1}^{prst}$	$\epsilon_{ij}\epsilon_{mn}ig(\overline{d_p}L^i_rig)ig(\overline{Q^c_s}^jL^m_tig)H^n$
	$\mathcal{O}_{ar{d}LQLH2}^{prst}$	$\epsilon_{im}\epsilon_{jn}ig(\overline{d_p}L^i_rig)ig(\overline{Q^c_s}^jL^m_tig)H^n$
	$\mathcal{O}_{ar{Q}uLLH}^{prst}$	$\epsilon_{ij}ig(\overline{Q_p}u_rig)ig(\overline{L_s^c}L_t^iig)H^j$

LNV at Dimension 7 in SMEFT

• bottom-up approach:

 caveat: simplified, could be correlations/cancellations

0	Onenator	Matahing
0	Operator	Matching
$O^{S,prst}_{e u;LL}$	$\left(\overline{e_{Rp}}e_{Lr} ight)\left(\overline{ u_{s}^{c}} u_{t} ight)$	$\frac{4G_F}{\sqrt{2}}c_{e\nu;LL}^{S,prst} = -\frac{\sqrt{2}v}{8} \left(2C_{\bar{e}LLLH}^{prst} + C_{\bar{e}LLLH}^{psrt} + s \leftrightarrow t \right)$
$O^{S,prst}_{e u;RL}$	$(\overline{e_{Lp}}e_{Rr})(\overline{ u_s^c} u_t)$	$rac{4G_F}{\sqrt{2}}c^{S,prst}_{e u;RL} = -rac{\sqrt{2}v}{2} ig(C^{sr}_{LeHD}\delta^{tp}+C^{tr}_{LeHD}\delta^{sp}ig)$
$O_{e u;LL}^{T,prst}$	$(\overline{e_{Rp}}\sigma_{\mu u}e_{Lr})(\overline{ u_s^c}\sigma^{\mu u} u_t)$	$rac{4G_F}{\sqrt{2}}c_{e u;LL}^{T,prst}=+rac{\sqrt{2}v}{32}ig(C_{ar{e}LLLH}^{psrt}-C_{ar{e}LLLH}^{ptrs}ig)$
$O^{S,prst}_{d u;LL}$	$(\overline{d_{Rp}}d_{Lr})(\overline{ u_s^c} u_t)$	$\frac{4G_F}{\sqrt{2}}c^{S,prst}_{d\nu;LL} = -\frac{\sqrt{2}v}{8}V_{xr}\left(C^{ptxs}_{\bar{d}LQLH1} + C^{psxt}_{\bar{d}LQLH1}\right)$
$O_{d u;LL}^{T,prst}$	$(\overline{d_{Rp}}\sigma_{\mu u}d_{Lr})(\overline{ u_s^c}\sigma^{\mu u} u_t)$	$\frac{4G_F}{\sqrt{2}}c_{d\nu;LL}^{T,prst} = -\frac{\sqrt{2}v}{32}V_{xr} \left(C_{\bar{d}LQLH1}^{ptxs} - C_{\bar{d}LQLH1}^{psxt}\right)$
$O^{S,prst}_{u u;RL}$	$(\overline{u_{Lp}}u_{Rr})(\overline{ u_s^c} u_t)$	$rac{4G_F}{\sqrt{2}}c^{S,prst}_{u u;RL} = +rac{\sqrt{2}v}{4} \left(C^{prst}_{ar{Q}uLLH} + C^{prts}_{ar{Q}uLLH} ight)$
$O^{S,prst}_{du u e;LL}$	$(\overline{d_{Rp}}u_{Lr})(\overline{ u_s^c}e_{Lt})$	$\frac{4G_F}{\sqrt{2}}c^{S,prst}_{du\nu e;LL} = \\ +\frac{\sqrt{2}v}{8} \left(2C^{ptrs}_{\bar{d}LQLH1} + C^{ptrs}_{\bar{d}LQLH2} - C^{psrt}_{\bar{d}LQLH2}\right)$
$O^{S,prst}_{du ue;RL}$	$(\overline{d_{Lp}}u_{Rr})(\overline{ u_s^c}e_{Lt})$	$rac{4G_F}{\sqrt{2}}c^{S,prst}_{du ue;RL}=+rac{\sqrt{2}v}{2}V^*_{xp}C^{xrts}_{ar{Q}uLLH}$
$O_{du ue;LL}^{T,prst}$	$(\overline{d_{Rp}}\sigma_{\mu u}u_{Lr})(\overline{ u_s^c}\sigma^{\mu u}e_{Lt})$	$\frac{4G_F}{\sqrt{2}}c_{du\nu e;LL}^{T,prst} = \\ +\frac{\sqrt{2}v}{32} \left(2C_{\bar{d}LQLH1}^{ptrs} + C_{\bar{d}LQLH2}^{ptrs} + C_{\bar{d}LQLH2}^{psrt}\right)$
$O^{V,prst}_{du ue;LR}$	$(\overline{d_{Lp}}\gamma_{\mu}u_{Lr})(\overline{ u_{s}^{c}}\gamma^{\mu}e_{Rt})$	$rac{4G_F}{\sqrt{2}}c^{V,prst}_{du ue;LR}=+rac{\sqrt{2}v}{2}V^*_{rp}C^{st}_{LeHD}$
$O^{V,prst}_{du ue;RR}$	$(\overline{d_{Rp}}\gamma_{\mu}u_{Rr})(\overline{ u_{s}^{c}}\gamma^{\mu}e_{Rt})$	$rac{4G_F}{\sqrt{2}}c^{V,prst}_{du u e;RR}=+rac{\sqrt{2}v}{4}C^{psrt}_{ar{d}LueH}$
$O^{S,prst}_{d u;RL}$	$(\overline{d_{Lp}}d_{Rr})(\overline{ u_s^c} u_t)$	
$O^{S,prst}_{u u;LL}$	$(\overline{u_{Rp}}u_{Lr})(\overline{ u_s^c} u_t)$	Not induced by $d = 7 \ \Delta L = 2 \ \text{SMEFT}$ operators
$O_{u u;LL}^{T,prst}$	$(\overline{u_{Rp}}\sigma_{\mu u}u_{Lr})(\overline{ u_s^c}\sigma^{\mu u} u_t)$	

LNV at Dimension 7 in SMEFT

- clearly, neutrinoless double beta decay is the best probe
- but: sensitive to LNV only in the electron flavour
- if observed, not enough info to distinguish the dominant mechanism and therefore, the underlying new physics (also nuclear uncertainties ...)
- \rightarrow complementary probes vital

LEFT Wilson Coefficient	Value	SMEFT Wilson Coefficient	Value $[\text{TeV}^{-3}]$	$\Lambda_{\rm NP}$ [TeV]
$c^{S}_{du\nu e:LL}$	$1.86 \cdot 10^{-10}$	$C_{\bar{d}LQLH1}$	$7.06 \cdot 10^{-8}$	242
$c^{S}_{du ue;RL}$	$1.86 \cdot 10^{-10}$	$C_{ar{Q}uLLH}$	$3.62\cdot 10^{-8}$	302
$c^V_{du u e;LR}$	$8.20 \cdot 10^{-10}$	C_{LeHD}	$1.55\cdot 10^{-7}$	186
$c^V_{du ue;RR}$	$5.93 \cdot 10^{-8}$	$C_{ar{d}LueH}$	$1.12 \cdot 10^{-5}$	44.7
$c_{du u e;LL}^{T}$	$4.51 \cdot 10^{-10}$	$C_{ar{d}LQLH1}$	$6.83 \cdot 10^{-7}$	114
,		$C_{ar{d}LQLH2}$	$3.41 \cdot 10^{-7}$	143
$c_{duve:LL}^{(7)V}$	$9.87\cdot 10^{-6}$	C_{LHD1}	$1.36 \cdot 10^{-3}$	9.03
		C_{LHD2}	$2.71\cdot 10^{-3}$	7.17
		C_{LHW}	$3.39\cdot 10^{-4}$	14.3
$c^{(7)V}_{du u e;RL}$	$9.87 \cdot 10^{-6}$	$C_{ar{d}uLLD}$	$1.32 \cdot 10^{-3}$	9.11
$c_{V;LL}^{(9);ij}$	$1.40 \cdot 10^{-5}$	C_{LHD1}	$9.91\cdot 10^{-4}$	10.0
,		C_{LHW}	$2.48\cdot10^{-4}$	15.9
$c_{V;LR}^{(9);ij}$	$2.66\cdot 10^{-8}$	$C_{ar{d}uLLD}$	$1.83 \cdot 10^{-6}$	81.7

Complementary Probes

• charged current LNV NSI @LBL oscillation exp.

Bolton, Deppisch: PRD 99 (2019)

- production charge blind
- detection sensitive to outgoing lepton charge

LEFT Wilson Coefficient	Value	SMEFT Wilson Coefficient	$Value$ $[TeV^{-3}]$	$\Lambda_{ m NP} \ [m TeV]$	Experiment
$c^{V,11ee(e\mu)}_{du u e;LR}$	0.017	$C_{LeHD}^{ee(e\mu)}$ <	3.2	0.7	BamLAND
$c^{V,11ee(e\mu)}_{du ue;RR}$	0.017	$C^{1e1e(1e1\mu)}_{\bar{d}LueH}$	6.4	0.5	KamLAND
$c^{V,11e au}_{du u e:LR}$	0.015	$C_{LeHD}^{ee(e au)}$	2.8	0.7	RamLAND
$c^{V,11e au}_{du u e;RR}$	0.015	$C^{1e1 au}_{ar{d}LueH}$	5.7	0.6	KamLAND
$c^{V,11 \mu e}_{du u e;LR}$	0.22 - 3.47	$C_{LeHD}^{\mu e}$	41.7 - 658.1	0.1 - 0.3	MINOS
$c^{V,11 \mu e}_{du u e;RR}$	0.22 - 3.47	$C^{1\mu 1e}_{ar{d}LueH}$	83.4 - 1316.2	0.1 - 0.2	MINOS
$c^{V,11\dot{\mu}\mu}_{du u e;LR}$	0.16-0.63	$C_{LeHD}^{\mu\mu}$	30.3 - 119.5	0.2 - 0.3	MINOS
$c^{V,11\dot{\mu}\mu}_{du ue;RR}$	0.16 - 0.63	$C^{1\mu1\mu}_{ar{d}LueH}$	60.7 - 239.0	0.2 - 0.3	MINOS
$c^{V,11 \mu au}_{du u e;LR}$	0.16-0.71	$C_{LeHD}^{\mu au}$	30.3 - 134.7	0.2 - 0.3	MINOS
$c^{V,11 \dot{\mu} au}_{du u e;RR}$	0.16-0.71	$C^{1\mu 1 au}_{ar{d}LueH}$	60.7 - 269.31	0.2 - 0.3	MINOS

Complementary Probes

Deppisch, Fridell, Harz: JHEP 12 (2020) Felkl, Li, Schmidt: JHEP 12 (2021)

Li, Ma, Schmidt: PRD 101 (2020)

- LNV dim-7 SMEFT can be probed with rare meson decays and rare tau decays
- very weak constraints from $\begin{array}{c} K^+ \to \pi^- \ell^+ \ell^+ \\ \tau^\pm \to \ell^\mp_\alpha P_i^\pm P_i^\pm \end{array}$
- $M' \rightarrow M \nu \nu$ well discussed in literature in the context of dim-7 SMEFT
- charged Kaon decays @NA62 provide the best limits
- dipole type of contributions \tilde{c} an be present, but are

suppressed

lukas.graf@berke	ley.edu
------------------	---------

Current Bound							
LEFT Wilson							
Coefficient	Value	$C_{\bar{d}LQLH1}$ [TeV ⁻³]	$\Lambda_{ m NP}$ [TeV]	Observable			
$c^{S,ds\gamma\gamma}_{d u;LL}$	$1.3 imes 10^{-6}$	4.8×10^{-4}	12.8	$K_L \rightarrow \nu \nu$			
$c^{S,ds\gamma\gamma}_{d u;LL}$	$2.5 imes 10^{-7}$	9.6×10^{-5}	21.8	$K^+ \rightarrow \pi^+ \nu \nu$			
$c^{S,ds\gamma\gamma}_{d u;LL}$	$2.6 imes 10^{-7}$	$9.9 imes 10^{-5}$	21.6	$K^0 o \pi^0 \nu \nu$			
	Futur	e Sensitivity					
$c^{S,ds\gamma\gamma}_{d u;LL}$	8.4×10^{-8}	$3.2 imes10^{-5}$ (31.5	$K^+ \to \pi^+ \nu \nu$			
$c^{S,ds\gamma\gamma}_{d u;LL}$	$1.4 imes 10^{-7}$	$5.2 imes 10^{-5}$	26.8	$K^0 o \pi^0 \nu \nu$			

Current Bound							
LEFT Wilson		~					
Coefficient	Value	$C_{\bar{d}LQLH1}$ [TeV ⁻³]	$\Lambda_{ m NP} \ [m TeV]$	Observable			
$c^{S,sb\gamma\gamma}_{d u;LL}$	$3.6 imes 10^{-4}$	0.14 🔇	1.9	$B o K^{(*)} \nu \nu$			
$c^{S,sb\gamma\delta}_{d u;LL}$	$2.7 imes 10^{-4}$	0.21	1.7	$B o K^{(*)} \nu \nu$			
$c^{T,sb\gamma\delta}_{d u;LL}$	$0.6 imes 10^{-4}$	0.18	1.75	$B\to K^*\nu\nu$			
	Future Sens	sitivity (50 a	$ab^{-1})$				
$c^{S,sb\gamma\gamma}_{d u;LL}$	0.6×10^{-4}	0.02 🔇	3.5	$B \to K \nu \nu$			
$c^{S,sb\gamma\delta}_{d u;LL}$	$0.6 imes 10^{-4}$	0.05	2.8	$B \to K \nu \nu$			
$c^{T,sb\gamma\delta}_{d u;LL}$	$0.3 imes 10^{-4}$	0.08	2.3	$B\to K^*\nu\nu$			

 $\mu^+ \rightarrow e^+ \bar{\nu}_e \bar{\nu}_\mu$

Complementary Republics $\mu^+ \deg_{\overline{\mathcal{O}}_{\overline{e}LLLH}}$ and leptonic $\mu^+ \deg_{\overline{e}LLH}$

- non-standard muon decay eLLL does not contribute at tree level to 0vbb
- at LEFT level: $\mathcal{L} = -\frac{4G_F}{\sqrt{2}} \left(c_{e\nu;LL}^{S,\mu ee\mu} \left(\overline{\mu_R} e_L \right) \left(\overline{\nu_e^c} \nu_{\mu} \right) + c_{e\nu;LL}^{S,e\mu e\mu} \left(\overline{e_R} \mu_L \right) \left(\overline{\nu_e^c} \nu_{\mu} \right) \right)$ $\left. + c_{e\nu;LL}^{T,\mu ee\mu} \left(\overline{\mu_R} \sigma_{\mu\nu} e_L \right) \left(\overline{\nu_e^c} \sigma^{\mu\nu} \nu_\mu \right) + c_{e\nu;LL}^{T,e\mu e\mu} \left(\overline{e_R} \sigma_{\mu\nu} \mu_L \right) \left(\overline{\nu_e^c} \sigma^{\mu\nu} \nu_\mu \right) \right\} + \text{h.c.}$

 $C_{e\nu:LL}^{S(T),\mu ee\mu}$ • only; the highlighted terms can mediate the experimentally probed $\mu^+ \to e^+ \bar{\nu}_e \bar{\nu}_\mu$

• CC process $p \bar{\nu}_e \rightarrow e^{+n} \bar{\nu}_e \rightarrow e^{+n} n^{\bar{\nu}_e}$ was used to identify electron antineutrino

Current Bound LEFT Wilson $C_{\bar{e}LLLH}$ Λ_{NP} Coefficient Observable Value $[\text{TeV}^{-3}]$ [TeV] $c^{S,\mu ee\mu}_{e
u;LL} \ c^{T,\mu ee\mu}_{e
u;LL}$ 15.2 $0.4 \quad \mu^+ \to e^+ \bar{\nu}_e \bar{\nu}_\mu, \tilde{\rho} = 0.75$ 0.06 $\mu^+ \to e^+ \bar{\nu}_e \bar{\nu}_\mu, \tilde{\rho} = 0.25$ 0.2121.60.04

B. Armbruster et al.: PRL 90 (2003)

Complementary (Probes⁺)

- μ^{-} to e⁺ conversion $R_{\mu^{-}e^{+}} \equiv \frac{\Gamma(\mu^{-} + N \rightarrow e^{+} + N')}{\Gamma(\mu^{-} + N \rightarrow \nu_{\mu} + N'')}$
 - best limits: SINDRUM II, upcoming Mu2e, COMET $(\mu^- e^+)$ • small contributions from dim-7 SMEFT,
 - for $\Lambda \sim 1$ TeV: R $\sim 10^{-24}$
- neutrino magnetic moment

$$\mathcal{L}_{M} \supset \frac{1}{2} \left(\nu_{1} \ \nu_{2} \ \nu_{3} \right) \sigma_{\mu\nu} \begin{pmatrix} 0 & \mu_{12} & \mu_{13} \\ -\mu_{12} & 0 & \mu_{23} \\ -\mu_{13} & -\mu_{23} & 0 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} F^{\mu\nu} + \text{h.c.} \qquad c_{\nu\nu F}^{5\gamma} / e \equiv \mu_{ij} = \frac{1}{2v} \left(v^{3} C_{LHB}^{ij} - v^{3} \frac{C_{LHW}^{ij} - C_{LHW}^{ji}}{2} \right)$$

• solar: Borexino; reactor: GEMMA, TEXONO, CONUS; accelerator: LSND, DUNE

Unraveling the Lepton Number Violation

Berryman, de Gouvea

• $\Lambda > 10$ TeV, competitive with 0vbb

lukas.graf@berkeley.edu

$$\Lambda \sim 1$$
 $R_{\mu^- e^+} \sim 10^{-24}$

irigliano, W. Dekens, J. \mathcal{R} Vries, M.L Graesser, E. Mereghetti: JHEP 12 (2017)

 $|\mathcal{C}_{LNB}^{ij}|$

 $\Lambda > 10$

an de Gouvêa

 $0\nu\beta\beta$

yman₂de Gouvêa et al P

Berryman, de Gouvêa et al.: PRD (2017)

SMEFT Dim-7 LNV at Colliders

- main mode of interest: $pp \rightarrow \ell^{\pm} \ell^{\pm} j j$
- recasting of the search for the Keung-Senjanović process by ATLAS
- study along the lines

of the analysis for

Weinberg operator

Fuks, Neundorf, Peters, Ruiz, Saimpert, PRD 103 (2021) CMS, JHEP 03 (2022)

· caveats: resonant production, validity of EFT

Graesser, Li, Ramsey-Musolf, Shen, Quiroga, JHEP 10 (2022) Busoni, De Simone, Morgante, Riotto, PLB 728 (2014)

Operator	$\sigma(pp \to \mu)$ LHC	$^{\pm}\mu^{\pm}jj$) (pb) FCC	$\Lambda_{ m LNV}$ [TeV]	$\Lambda^{ m future}_{ m LNV} \ [m TeV]$
$\mathcal{O}_{ar{Q}uLLH}$	$2.4 imes 10^{-4}$	0.11	1.1	5.4
$\mathcal{O}_{ar{d}LQLH2}$	$1.5 imes 10^{-5}$	$4.3 imes 10^{-3}$	0.68	3.1
$\mathcal{O}_{ar{d}LQLH1}$	$6.9 imes10^{-5}$	0.030	0.86	4.3
$\mathcal{O}_{ar{d}LueH}$	$5.7 imes10^{-5}$	0.035	0.84	4.5
$\mathcal{O}_{ar{d}uLLD}$	0.64	210	4.0	19
\mathcal{O}_{LDH2}	$2.7 imes 10^{-12}$	$1.7 imes 10^{-10}$	0.050^{*}	0.18
\mathcal{O}_{LDH1}	$1.9 imes 10^{-5}$	0.061	0.69	4.9
\mathcal{O}_{LeHD}	$1.2 imes 10^{-8}$	$3.1 imes 10^{-8}$	0.21^{*}	0.44
\mathcal{O}_{LH}	$1.5 imes 10^{-8}$	$2.0 imes 10^{-6}$	0.21^{*}	0.87

PHYSICS FRONTIER CENTE

letwork for Neutrinos

5	
ATLAS, JHEP 01 (2019)	ŗ
₫ N _R	
$q \qquad W_{R} \qquad \qquad$	

Complementary Probes @SMEFT dim 7

O	Operator
\mathcal{O}_{LH}^{pr}	$\epsilon_{ij}\epsilon_{mn} \left(\overline{L_p^c}^i L_r^m\right) H^j H^n \left(H^{\dagger} H\right)$
\mathcal{O}_{LeHD}^{pr}	$\epsilon_{ij}\epsilon_{mn}ig(\overline{L^c_p}{}^i\gamma_\mu e_rig)H^jig(H^miD^\mu H^nig)$
\mathcal{O}_{LHD1}^{pr}	$\epsilon_{ij}\epsilon_{mn}ig(\overline{L^c_p}^i D_\mu L^j_rig)ig(H^m D^\mu H^nig)$
\mathcal{O}_{LHD2}^{pr}	$\epsilon_{im}\epsilon_{jn}ig(\overline{L^c_p}^i D_\mu L^j_rig)ig(H^m D^\mu H^nig)$
\mathcal{O}_{LHB}^{pr}	$g\epsilon_{ij}\epsilon_{mn}ig(\overline{L^c_p}{}^i\sigma_{\mu u}L^m_rig)H^jH^nB^{\mu u}$
\mathcal{O}_{LHW}^{pr}	$g'\epsilon_{ij}(\epsilon\tau^{I})_{mn}(\overline{L_{p}^{c}}^{i}\sigma_{\mu\nu}L_{r}^{m})H^{j}H^{n}W^{I\mu\nu}$
$\mathcal{O}_{ar{d}uLLD}^{prst}$	$\epsilon_{ij}ig(\overline{d_p}\gamma_\mu u_rig)ig(\overline{L_s^c}{}^iiD^\mu L_t^jig)$
$\mathcal{O}_{ar{e}LLLH}^{prst}$	$\epsilon_{ij}\epsilon_{mn}ig(\overline{e_p}L^i_rig)ig(\overline{L^c_s}^jL^m_tig)H^n$
$\mathcal{O}_{ar{d}LueH}^{prst}$	$\epsilon_{ij}ig(\overline{d_p}L^i_rig)ig(\overline{u^c_s}e_tig)H^j$
$\mathcal{O}_{ar{d}LQLH1}^{prst}$	$\epsilon_{ij}\epsilon_{mn}ig(\overline{d_p}L^i_rig)ig(\overline{Q^c_s}^jL^m_tig)H^n$
$\mathcal{O}_{ar{d}LQLH2}^{prst}$	$\epsilon_{im}\overline{\epsilon_{jn}ig(\overline{d_p}L^i_rig)ig(\overline{Q^c_s}^jL^m_tig)}H^n$
$\mathcal{O}_{ar{Q}uLLH}^{prst}$	$\overline{\epsilon_{ij}ig(\overline{Q_p}u_rig)ig(\overline{L_s^c}L_t^iig)H^j}$

K. Fridell, LG, J. Harz, C. Hati: 2306.08709

Complementary Probes @SMEFT dim 7

		Operator	Collider	0 uetaeta	LBL Osc.	$\mu_{ u}$	μ^+ -decay	$\mathrm{CE} \nu \mathrm{NS}$	Meson decay
0	Operator					•			
\mathcal{O}_{LH}^{pr}	$\epsilon_{ij}\epsilon_{mn} (\overline{L_p^c}^i L_r^m) H^j H^n (H^{\dagger} H)$	\mathcal{O}_{LH}	\checkmark	\checkmark	-	-	-	-	-
\mathcal{O}_{LeHD}^{pr}	$\epsilon_{ij}\epsilon_{mn} (\overline{L_p^c}^i \gamma_\mu e_r) H^j (H^m i D^\mu H^n)$	\mathcal{O}_{LeHD}	\checkmark	\checkmark	\checkmark	-	-	-	-
\mathcal{O}_{LHD1}^{pr}	$\epsilon_{ij}\epsilon_{mn} \left(\overline{L_p^c}{}^i D_{\mu} L_r^j \right) \left(H^m D^{\mu} H^n \right)$	\mathcal{O}_{LDH1}	\checkmark	\checkmark	-	-	-	-	-
\mathcal{O}_{LHD2}^{pr}	$\epsilon_{im}\epsilon_{jn} \left(\overline{L_p^c}^i D_\mu L_r^j\right) \left(H^m D^\mu H^n\right)$	\mathcal{O}_{LDH2}	\checkmark	\checkmark	-	-	-	-	-
\mathcal{O}_{LHB}^{pr}	$g\epsilon_{ij}\epsilon_{mn}ig(\overline{L^c_p}{}^i\sigma_{\mu u}L^m_rig)H^jH^nB^{\mu u}$	\mathcal{O}_{LHB}	-	-	-	\checkmark	-	-	-
\mathcal{O}_{LHW}^{pr}	$g'\epsilon_{ij}(\epsilon\tau^{I})_{mn}(\overline{L_{p}^{c}}^{i}\sigma_{\mu u}L_{r}^{m})H^{j}H^{n}W^{I\mu\nu}$	\mathcal{O}_{LHW}	-	\checkmark	-	\checkmark	-	-	-
$\mathcal{O}_{ar{d}uLLD}^{prst}$	$\epsilon_{ij}ig(\overline{d_p}\gamma_\mu u_rig)ig(\overline{L^c_s}{}^iiD^\mu L^j_tig)$	$\mathcal{O}_{\bar{d}uLLD}$	\checkmark	\checkmark	-	-	-	-	-
$\mathcal{O}_{ar{e}LLLH}^{prst}$	$\epsilon_{ij}\epsilon_{mn} \left(\overline{e_p}L_r^i\right) \left(\overline{L_s^c}^j L_t^m\right) H^n$	$\mathcal{O}_{\bar{e}LLLH}$	-	-	-	-	\checkmark	-	-
$\mathcal{O}_{ar{d}LueH}^{prst}$	$\epsilon_{ij}ig(\overline{d_p}L^i_rig)ig(\overline{u^c_s}e_tig)H^j$	$\mathcal{O}_{\bar{d}I_{M}aH}$	\checkmark	\checkmark	\checkmark	_	-	-	-
$\mathcal{O}_{ar{d}LQLH1}^{prst}$	$\epsilon_{ij}\epsilon_{mn} \left(\overline{d_p}L_r^i\right) \left(\overline{Q_s^c}^j L_t^m\right) H^n$	$\mathcal{O}_{\bar{d}OIIH1}$	\checkmark	\checkmark	1	_	-	\checkmark	\checkmark
$\mathcal{O}_{ar{d}LQLH2}^{prst}$	$\epsilon_{im}\epsilon_{jn}ig(\overline{d_p}L^i_rig)ig(\overline{Q^c_s}^jL^m_tig)H^n$	$\mathcal{O}_{\overline{1}011}$	5	1	5	_	-	_	-
$\mathcal{O}_{ar{Q}uLLH}^{prst}$	$\epsilon_{ij}ig(\overline{Q_p}u_rig)ig(\overline{L_s^c}L_t^iig)H^j$	$\int \mathcal{O}_{\bar{a}} QLLH2$	· ./		· · · ·	_	_	_	_
		\sim_{QuLLH}	v	•	×	-	-	-	-

K. Fridell, LG, J. Harz, C. Hati: 2306.08709

Conclusion & Outlook

- $0\nu\beta\beta$ complex process, access to new physics a variety of different mechanisms besides the standard light neutrino exchange can contribute to $0\nu\beta\beta \rightarrow$ effective description
- to unravel the underlying new physics necessary to distinguish the dominant LNV interaction
- using only 0vββ challenging task: other modes, energy spectrum, angular correlation, isotope ratios – main issue: unknown LECs + uncertain NMEs
- hard to pin down a specific operator, but at least distinguish any exotic contribution
- combining various contributions → involved, tedious calculations with a variety of inputs → vDoBe tool developed and available online
- complementarity could help with unraveling the LNV physics → other low-energy experiments, but also high-energy data useful
- LNV at colliders: same-sign dileptons, stringent limits for muon flavour
- next: from EFT to simplified models, vSMEFT

Conclusion & Outlook

- $0\nu\beta\beta$ complex process, access to new physics a variety of different mechanisms besides the standard light neutrino exchange can contribute to $0\nu\beta\beta \rightarrow$ effective description
- to unravel the underlying new physics necessary to distinguish the dominant LNV interaction
- using only 0vββ challenging task: other modes, energy spectrum, angular correlation, isotope ratios – main issue: unknown LECs + uncertain NMEs
- hard to pin down a specific operator, but at least distinguish any exotic contribution
- combining various contributions → involved, tedious calculations with a variety of inputs → vDoBe tool developed and available online
- complementarity could help with unraveling the LNV physics → other low-energy experiments, but also high-energy data useful
- LNV at colliders: same-sign dileptons, stringent limits for muon flavour
- next: from EFT to simplified models, vSMEFT