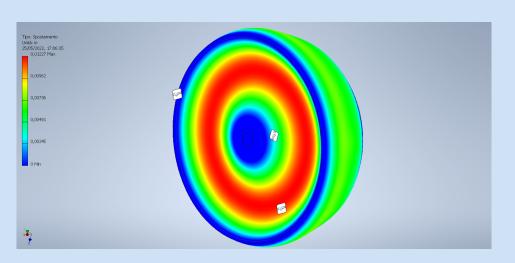
Mechanics

Assuming composite materials from aeronautics technology

Stiff and light, with a skeleton supporting alignment elements

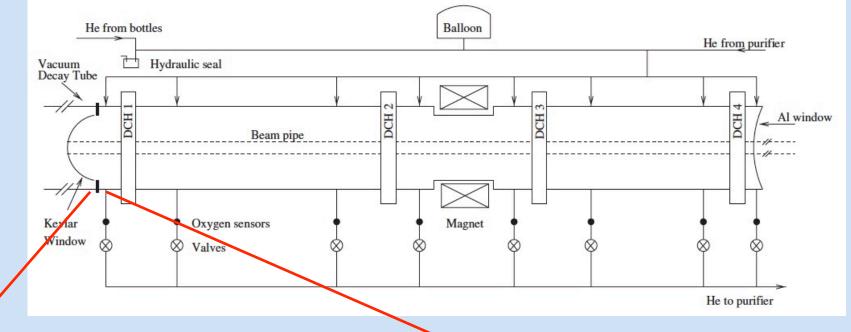
Need guidance to select alternatives and define specifications

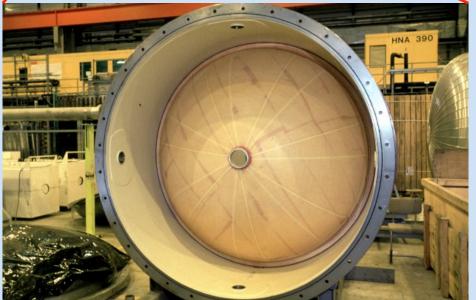

High-P Ar: Alternative to greenhouse gas

Requires to run at 2/2.5 bar absolute

Dedicated R&D planned to start in fall 2022

stage 1: simple cylinder of candidate material(s)


stage 2: prototype on scale



NA48 Example

Example NA48 vacuum decay volume

Epoxy impregnated kevlar tissue

2.30 meter diameter

Glued to Al center ring + steel flange

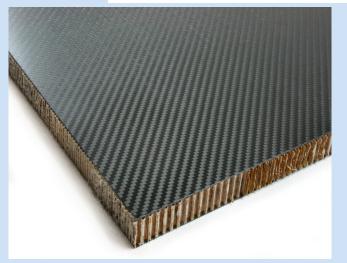
1.3 m radius curvature

0.3% radiation length

INFN Plans

Select a candidate material

Realize a simple (cylinder) prototype to test material and FEM calculations (2022)


Realize a realistic prototype (2023)

(Part of) funds budgeted by INFN committee 1 week ago

Property				Nominal Thickness, mm (mil)								Test Method
	0.05 (2)	0.08 (3)	0.10 (4)	0.13 (5)	0.18 (7)	0.25 (10)	0.30 (12)	0.38 (15)	0.51 (20)	0.61 (24)	0.076 (30)	
Typical Thickness, mm mil	0.06 2.2	0.08 3.1	0.11 4.2	0.13 5.2	0.18 7.2	0.26 10.2	0.31 12.2	0.39 15.3	0.52 20.4	0.61 24.2	0.78 30.6	ASTM D374 ¹
Basis Weight, g/m²	41	64	88	115	174	249	310	395	549	692	839	ASTM D646
Density, g/cc	0.72	0.81	0.83	0.88	0.95	0.96	1.00	1.02	1.06	1.13	1.08	
Tensile Strength, N/cm MD XD	43 19	68 34	93 49	141 71	227 116	296 161	380 185	462 252	610 374	728 500	816 592	ASTM D828
Elongation, % MD XD	10 7	12 9	12 9	16 13	20 15	22 18	23 18	22 16	23 18	21 16	21 17	ASTM D828
Elmendorf Tear, N MD XD	0.8 1.5	1.2 2.4	1.9 4.4	2.3 4.8	3.7 7.2	5.6 10.6	7.1 13.7	9.0 16.7	14.3 24.8	N/A N/A	N/A N/A	TAPPI 414
Initial Tear Strength, N MD XD	11 6	16 9	24 14	31 17	48 27	69 42	88 55	110 71	158 114	191 153	233 193	ASTM D1004 ²
Shrinkage at 300°C, % MD XD	1.8 0.0	0.8	0.4 0.0	0.4	0.5 0.1	0.2	0.2 0.1	0.2 0.1	0.0	0.0	0.0	

MD = Machine Direction; XD = Cross Direction

^{2.} Data presented for initial tear strength is listed in the direction of the sample per ASTM D1004. The tear is 90 degrees to sample direction; hence, for papers with a higher reported machine direction initial tear strength, the paper will be tougher to tear in the cross direction.

High-Pressure dRICH - 29th September 2022

Method D; using 17 N/cm².

Questions

- * What is acceptable as candidate material?
 We assume to use CFRP or Al composites (no bulk material)
- * Are there companies you can suggest?

 Specialized ones could have their own suggestions based on past realizations.
- * Is there a required certification different from EU?
 In this case, a company in the States might be preferable
- * Is there specific certifications BNL required in addition?
- * What are the approval steps and can we have contacts with BNL experts to define them:

certification (see above) is an over-pressure test necessary/enough? is there an authority approval procedure?

* What is required at TDR level?

FEM calculations Prototype

.