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INTRODUCTION

A. Well-Established

• Observed isotropy of Universe to <∼ 0.1− 1.0% via
relic radiation

• Homogeneity deviations <∼ 0.1− 1.0% on a scale of
1010 ly

• GTR with cosmo constant is the best basis

• Steady state and changing G are not valid

• Hubble parameter is 50 km/sec/Mpc to within 50%

• Uniform density and pressure

• With Λ ∼ 0, critical density is 0.510−29g/cm3

• If density ¡ critical, Universe will expand un-
bounded and is infinite

• Density is important to know

• The use of celestial objects of a given type to deter-
mine the structure of the Universe is complicated
by their intrinsic evolution and the evolution of
their number as a function of time

• “But the distances over which galaxies can be ob-
served are small compared to cosmological scales.
To this day, therefore, the structure of the Universe
has not been established through observations of
ordinary galaxies either.”

• Important to know average density and particle
types

• Luminous matter has an average density of ∼
10−31g/cm3, suggesting average number density of
baryons ∼ 6× 10−8/cm3

• Galaxy motions suggest dark matter

• Antimatter absence suggests charge asymmetry

• RR photons now have an average number density
of ∼ 400/cm3, 108 − 1010 more than the number
density of baryons. Their T of 2.7 K corresponds
to an energy of 0.0007eV, yielding an overall photon
mass-energy density now of 5× 10−34g/cm3, much
lower than that of baryons now.

• Density of neutrinos and gravitational waves is dif-
ficult to determine.

• Thus there is as yet no answer to whether total den-
sity now is greater or less than critical density, and
consequently whether Universe is finite or infinite.

• Going back in time, T increases and radiation and
matter are in thermo equilibrium because matter
density ∼ V −1, while radiation density ∼ V −4/3

• At t ∼ 1sec in Friedmann solution, T ∼
1010 or 106eV and matter density ∼ 106g/cm3.
There would have been photons plus electrons and
positrons and protons and neutrons.

• Expansion leads to disappearance of positrons,
while neutrons decay or combine with protons,
forming 70% hydrogen and 30% helium by mass,
but almost no heavier elements. Also remaining
were neutrinos and antineutrinos.

• Further expansion means matter mass density ex-
ceeds photon mass-energy density of photons.

• All RR now seen is from z ∼ 1000, the time of last
scattering. The corresponding distance is about
97% of the distance to the singularity, the hori-
zon distance. The observable volume is then about
90% of the maximum possible volume.

• Existing structure indicates early deviations from
homogeneity and isotropy.

B. Not Well-Established

• Use perturbation theory by modes on simple time-
dependent solution rather than exact solutions of
four dimensional spacetime, especially since initial
conditions are unknown.
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• But how large were density perturbations?

• Present average density of galaxy clusters is
roughly characteristic of the average overall density
at their formation time; this leads to an estimation
of the formation time. For the plasma state in the
RD era, this leads to fractional density oscillations
of 10−3 for δρ/ρ

• With theory, observations of RR fluctuations then
permit estimation perturbation magnitude was
functions of the scale or mass, i.e., the perturba-
tion spectrum.

• Summary of Important Recent Result: Universe
picture represents a weakly perturbed (almost ho-
mogeneous) expanding Universe with a definite ini-
tial (and large) entropy. Measurements of the spec-
trum and spatial distribution of the RR support
this picture.

• But can this picture explain galaxy rotation, mag-
netic fields and the origin of quasars?

• Primordial magnetic fields are not necessary;
plasma motions can generate observed fields.

• But galaxy rotation given vortex-free initial pertur-
bations? Possible given galaxy interactions.

• Another theory is that galaxies formed from explo-
sions of hyper dense bodies, but this violates known
physics.

C. Beginning of Expansion

• Anisotropic expansion before t ∼ 1sec?

• Is there infinite density at the beginning or is that a
characteristic of the isotropic homogeneous model?

• There is proof a singularity even if expansion was
not homogeneous and isotropic?

• Details later, but here consider here aforementioned
models plus perturbations. With these bases, do
present observations and the laws of physics permit
the establishment of the history of the Universe,
including after and before (if meaningful) the sin-
gularity and the nature of the singularity itself?

• Approach this via thermodynamics: many initial
states can lead to a the same final state, which can
serve as the new initial state for further evolution;
the actual initial state is forgotten.

• Thus find that cosmo model which arises from a
wide class of initial early states.

• Many anisotropic lead to isotropic expansion. But
are such statistical arguments applicable?

• Why is the entropy of the Universe large? Why
hot at the start of expansion? Why are pertur-
bations leading to observed structure of just the
correct magnitude?

• Laws of physics seem sufficient to explain all. In-
tense particle creation can occur from intense grav-
itational field close to the time right after the sin-
gularity, but only given anisotropic expansion.

• Finally, there can be new phenomena given quan-
tization of the metric.

• Historical remark: Friedmann theory 1922-1924;
Einstein mention thereof; Lemaitre 1927. Thus
Lemaitre did not “independently” establish the
laws of the expanding Universe.

• After Hubble discovery in 1929, math solutions be-
came established theory. Einstein remarked in 1931
that Friedmann was the first to follow this way;

I. THE HOMOGENEOUS, ISOTROPIC
UNIVERSE: ITS EXPANSION AND

GEOMETRICAL STRUCTURE

1. Local Properties of the Homogeneous, Isotropic
Cosmological Model

Standard exposition based on Newtonian theory for
Hubble expansion, age of the universe, and matter den-
sity and pressure

2. Relativistic Theory of the Homogeneous,
Isotropic Universe

GTR needed to analyze large regions
See Vol. 1 for a sufficient exposition of GTR; Theory

of Fields by Landau and Lifschitz for a complete GTR ≫
Friedmann eqns, with results the same as for the Newto-
nian description
Various models for open, closed, and flat (critical den-

sity) geometry

3. The Propagation Of Photons And Neutrinos;
Observational Methods For Testing Cosmological

Theories

Significant effects of relativistic matter on early ex-
pansion; cosmological neutrinos would not be observable
today, though photons are
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As density becomes infinite as size and age approach
zero, visibility to an earlier stage is not possible be-
cause the optical depth, dependent on particle density,
diverges.

Whereas the theoretical particle horizon is at t = 0,
practically it is at a later time when the optical depth is
of order unity.

Observational quantities: red shift, angular size and
luminosity of distant objects, amount of matter as a func-
tion of red shift, apparent magnitude

Deceleration parameter and the first approximation

Impossibility of determining the cosmo model if
sources evolve in an unknown way

Distance ladder to far-away objects

Redshift vs. apparent magnitude observations rule out
steady-state universe

No Olbers paradox in an expanding universe

4. The Cosmological Constant

Cosmo constant would only be manifest on the scale
of the universe

History of cosmo constant starting with opinion that
universe is static; Einstein desire for corresponding GTR
solution and ideas of Mach

Hubble observation of expansion and Friedmann non-
static GTR solutions Realization that cosmo constant is
not needed, especially given new Hubble value of 75 and
longer age for universe

Various cosmo models with nonzero cosmo constant.

II. PHYSICAL PROCESSES IN THE HOT
UNIVERSE

5. Intro to Part II

Relic radiation (RR = CMB) at T=2.7 K is the most
important observational fact, and this RR (nor the equiv-
alent background neutrinos) could not have been pro-
duced by astronomical objects

Also, there are about 10(9+−1) photons per baryon

These two data allow characterization of the composi-
tion of the Universe at earlier time given thermodynamic
equilibrium with specific entropy of matter conserved and
volume changing smoothly during expansion

In later stages, nuclear reactions cease and nucleosyn-
thesis takes place, with only photons, electrons, nuclei,
neutrinos and gravitons surviving, with the last two un-
detectable

Hot universe proved by observations for the period
10y ≤ t ≤ 1010y, and likely only consisting of matter-
ing the large, not antimatter too.

Short historical review of RR prediction and discovery

Complete EM spectrum in the universe, of which a
small section is the RR (Fig. 27, p. 126)

6. Thermodynamic Equilibrium. . .

Early radiation-dominated era with matter and anti-
matter
Ratio of photons to baryons hardly changes during ex-

pansion: thermo equilibrium during early stages and con-
servation of RR photons later
Given kT > mc2 , the number of particles and antipar-

ticles of each kind equals the number of photons. Thus
∼ 108 nucleon-antinucleon pairs in the early universe for
each nucleon today. This suggests that the present nu-
cleons result from a small excess (10−8) of nucleons over
anti nucleons early.
Expansion eras are therefore:

1. Hadron era: with nucleons and antinucleons and
ordinary and anti versions of all other particles; t <∼
10−6s and T > 1013K

2. Lepton era: with only a small remainder of nucle-
ons, electron and positrons annihilate by the end,
leaving a small remainder, and neutrinos decouple;
10−6s < t < 10s and 1013K > T > 5× 109K

3. Photon-Plasma era: plasma and radiation in equi-
librium; 10s < t < 1012s and 5×109K > T > 104K

4. Post-recombination era: t > 1012s and T < 104K
when the RR becomes transparent

Gravitons, if they exist, would always be present but
would not interact with other particles after Planck time
∼ 10−43s.

MISSING OR TRANSITION TEXT RESULT-
ING FROM IMAC FAILURE TO BE RE-
SOLVED
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At a sufficiently high temperature T such that kT >
Mc2, where M is the mass of the most massive particle,
photons and other relativistic particles dominate

P = e/3 = ρ× c2/3 and e = κ×σ×T 4 to take account
of all kinds of relativistic particles.

And n ∼ e/(3kT ) for the particle density
Consider T ∼ 1MeV , t ∼ 1sec, and n(electron) ∼

n(positron) ∼ 10−31cm−3 and annihilation cross section
σ(Annihilation) ∼ 10−24 and particles move at c, then
time to establish equilibrium is

τ ∼ 10−17 small compared to 1 sec.
Similarly for higher mass particles at higher tempera-

tures and correspondingly earlier times.
When kT > mnucc

2, nnuc then − nantinuc then =
nnuc now ∼ 10−8 × nphotons now

nnuc then ∼ nphotons then

One could apply the same considerations to quarks and
so on and so forth if kT > mqc

2

Hot vs. cold matter as n ≫ infinity ? Different models
of Hagedorn and Omnes

Quark theory for nucleons
Conservation of energy and baryon charge and en-

tropy for slow, adiabatic processes ⇒ evolution can be
described.

Particle-antiparticle annihilation requires binary colli-
sions, increasingly unlikely as the Universe expands.

1. Residual n(antiparticle) in charge symmetric the-
ory is very small at the end of hadron era, T ∼
1MeV because annihilation σ is large and nucleon
excess ⇒ exponentially small n(antiparticle) when
their creation ceases.

2. Residual n(q) is large . With respect to photons, it
is ∼ [Gm2/hc]1/2 ∼ 10−18; with respect to nucle-
ons, it is about 10−9.

3. In spatially homogeneous, charge-sym universe, nu-
cleon problem similar to quarks and leads to 10−18

nucleons/photon, disagreeing with observations by
1010. So we should consider charge-asymmetric
universe.

This leads to Omnes theory. Charge symmetry
of primordial homogeneity is spontaneously broken on
the microscopic scale. Strong interaction leads to
separation of matter and antimatter drops of size ∼
10−3cm at 10−6sec

This separation tendency stops as T decreases and an-
nihilation occurs as usual. But spatial separation means
annihilation occurs mainly at the boundary of regions.

There exist regions with 10−9 nucleons/photon and
regions with 10−9 antinuc/photon ⇒ galaxies and anti-
galaxies. Omnes calculations lead to two characteristic
quantities: average n(nuc or antinuc) / n(photons). And
characteristic size of matter or antimatter region. But a
consistent calc of separation and following annihilation

leads to a much smaller concentration of nucleons and
antinucleons, disagreeing with present density of nucle-
ons

Annihilation continues during radiation-dominated
stage, but expected consequences of prolonged annihila-
tion are not observed. Thus, even with account of phase
separation, charge-symmetric theory does not agree with
observations.

Consider therefore charge-asymmetric Universe with
excess baryons always. Early, excess of baryons is small
given number of pairs, so Omnes phase separation is plau-
sible then

For T = 300MeV , charge asymmetry manifests itself
only in at T > 1MeV , when there is an abundance of
electrons and positrons and RR spectrum takes equilib-
rium form.

Finally, charge asymmetry leads to n(baryon today) =
n(baryon charge density initially).

It would nevertheless be very interesting to find evi-
dence now of hadron era phase separation.

Hagedorn theory that the number of charged particles
is infinite is contradicted by experimental results of QED.

7. Kinetics of Elementary Particle Processes

In earliest stages of the hot Universe, neutrinos (+anti)
are in thermo equilib with other particles. Creation of
neutrinos mainly by e- + e+ ≫ neutrino (+anti) with
relativistic cross section

σ ∼ g2 × E2

h4 × c4
, (1)

where g ∼ 10−49ergscm3 is the weak interaction constant
Given particle energy of kT , time to reach equilibrium

τ = 1/(σ×n×c) , and previous relation between universe
time t and temperature T, we obtain dependent of τ and
t:

τ ∼ [G5/4 × h13/4]

[g2 × c1/4]
× t5/2 (2)

(Landau & Lifschitz for statistical factors). When τ is
greater than t, neutrinos no longer interact either with
other particles or with one another. Equating them leads
to t ∼ 0.1s without consideration of numerical factors
but showing the dependencies of G and g . More ac-
curate calculations follow, including consideration of µ
neutrinos.
Present temperatures neutrinos compared to photons

is then (Peebles)

Tneutrino = (4/11)(1/3)×Tphoton ∼ 0.7×2.7K ∼ 2K (3)

But mass of neutrinos could be ≤ 100eV , while back-
ground cosmic neutrinos would have energy 5×10−4eV ,
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so observation of the background would require measure-
ment improvement by 106.
RR spectrum tells us about z ∼ 106 at t ∼ 1yr; neu-

trino spectrum could tell us abut z ∼ 1010 at t ∼ 0.1s
!

Particles that decay spontaneously disappear exponen-
tially as Universe expands. Stable particles would remain
if annihilation reactions do not occur.

Y FIGURE 30 FOR TEMPERATURE-
DEPENDENCE OF PARTICLE RELATIVE ENERGY
DENSITY

?? MISSING TEXT FOR APRIL AND MAY
RESULTING FROM IMAC FAILURE

MAY 12 SUMMARY

Introductory Remarks2

a. Concerning Gravitation by MTW, a new edition
(printing) was published in 2017 by Princeton Univer-
sity Press after the original in 1973 by Freeman. This
new edition contains by David Kaiser describing the
style of the original, the publishing history, and reac-
tions to it. The new edition also contains an additional
preface by MT that focuses on the status of the ma-
terial in the text in light of developments subsequent
to the original—chapter by chapter. Perturbations in
the early Universe that could lead to structure forma-
tion are not addressed in MTW, though the papers by
Lifschitz and Khalatnikov are cited (see point b).s

b. The 1961 textbook by Landau and Lifschitz entitled
the The Classical Theory of Fields does not contain
material about GTR cosmology that goes beyond the
simple Friedmann models, even though Lifschitz him-
self in 1946 and with Khalatnikov in 1964 addressed
GTR perturbations.

c. The 1972 monograph by Weinberg, Gravitation and

Cosmology: Principles and Applications of the GTR,
does contain material about GTR cosmology that goes
beyond the simple Friedmann models, in particular de-
scriptions of the early hot Universe and perturbations
that could lead to galaxy formation. There are cita-
tions to work by Z&N and to Lifschitz, among many,
many others.

11: Instability in the Hot Model

Approach of last chapter here applied to RD period,
when matter completely ionized, the radiation density
dominates, and the matter is coupled to the radiation.
For ω0 = 1, there is a short period, when the matter
is still completely ionized, and the sound speed varies as

b = (c/
√
3)√

[1+3ρm/4ρr]
. Matter and radiation densities become

equal when z = 104ω0 or t ∼ 2× 1011 × (ω0)
−2 s.

??????During the period the Universe is filled with a
medium whose equation of state is, P = e/3 ∼ a−4 ∼
t−2, and sound speed is b = c/

√
3. A definite value for

the temperature follows, while the matter density still
requires specification of several parameters.

With the help of the Jeans criterion, let us find the
conditions dividing regions of stability and instability.

Perturbations are of the form δ = δκ(t)×exp(k ·x∗ i) ,
where k = k0a(t0)

−1(1+z) and λ = λ0/(1+z). k0 and λ0

refer to the present. With the Jeans criterion taking the
form (b × k)2 = 4πGρ, and substituting values of b and
ρ for the RD era, we obtain

kJeans =
3

(
√
8× ct)

(4)

and

λJeans = 2π/kJeans = ct× 4π ×
√
2/3 (5)

The Jeans length is therefore of the order of the dis-
tance over which pressure gradients (sound waves) can
equalize density.

The regions of stability and instability are conveniently
seen in Figures 43 &44 Also see Weinberg, Figure 15.6,

See slides PPT 36 & 38
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Other points in this chapter:

a. as a result of dissipative processes, decay of a wave is
determined by conditions during the last part of every
period considered because the increase in photon MFP
overpowers the increase in the wavelength;

b. conclusion that difficult-to-observe particles give rise
to a rather small decrease in the amplitude of oscilla-
tions compared to neglecting them;

c. hypotheses that supermassive stars or globular clus-
ters result from entropy perturbs;

d. conservation of vortex velocity upon early stages of
expansion, matching perturbs when the eqn of state
change; and

e. Sakharov oscillations

12: Gravitational Instability in the GTR

GTR approach necessary for perturbations with λ >∼ ct
in a fluid with eqn of state P = e/3.
Method is take homogeneous, isotropic Friedmann

model but then to replace metric g by g0 + h , where h
represents perturbations; analogously, stress-energy ten-
sor changes from e to e0+δe, with δP determined by eqn
of state, and finally perturbed velocities u are assumed
small, with u0 fixed via the identity u ·u = 1 . These ex-
pressions are then substituted into GTR eqns, relating h,
δe, and u , and yielding their time evolution once initial
perturbations are specified.
See slides PPT 41 & 42 for the metric and the resulting

eqns for the perturbs from the GTR eqns. All computa-
tions are done in the linear approx in which the quantities
h are first-order. Then perturbed values of e, P and U
occur only in second order.
Two caveats:

1. GTR eqns put some restrictions on these initial val-
ues.

2. Coordinate system choice allows apparent unphys-
ical results; distinguishing between them is impor-
tant.

Follow approach of Lifschitz and many others: syn-
chronous reference system is used to study the perturba-
tions, and their consequences are studied in other coord
systems. Nonlinear approximations likely lead to impor-
tant changes to be examined in later chapters.
So consider perturbations in spatial regions which may

be large with respect to ct but small with respect to ra-
dius of curvature during the period studied; a ≫ ct dur-
ing the early stages of evolution, conditions equivalent
to perturbs in a flat model with ρcritical. This will yield
possible galactic evolution paths; Lifschitz studied more
general cases.
Solutions of the eqns will be as plane waves of the form

Q = e[iκ·x] on the background of a spatially homogeneous
and isotropic evolving Universe with the same invariances
as the unperturbed solution, with κ a certain vector and
Q a scalar.
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Then tensors can be constructed from κ and Q. There
will also be a vector P = κ×Q, and still another vector
Σ = Es×Q , with Es perpendicular to κ.
These are scalars, vectors and tensors only in 3-d space.
The scalar Q will describe density perturbations and

Es will describe velocity perturbs. Another tensor with a
plane wave dependence will describe gravitational waves.

Scalar : The main term for very early times is that
the fractional energy density varies linearly with time.
For late times, the fractional energy density would vary
as cos[(κ×η)/

√
3], corresponding to acoustic oscillations

with a speed of c/
√
3 and to constant-amplitude density

perturbations. This exact result supports the results of
the intuitive analysis. The exact theory also works with
metric perturbs, which would be finite as t tends to zero.
There was a line missing in the translation on page 292..

The independence of the metric perturbations with re-
spect to time during early stages of the expansion accords
completely with the idea underscored by the intuitive
analysis of long-wave perturbs. This independence is also
in accord with the independent evolution of different re-
gions of the Universe with different initial conditions.

For λ ≪ ct , the metric perturbs tend to zero and we
are left with a description of sound waves. But this result
applies to the eqn of state of a RD plasma, where b =
c/
√
3, with the pressure gradient smoothing perturbs, so

the “sound” horizon is important. For dust, P = 0, there
is no sound propagation to smooth geometry and density
perturbs. Density perturbs continue to grow for λ < ct,
but metric perturbs remain constant.

One very important conclusion of Lifschitz’s work that
remains valid is that to explain finite perturbs today
(galaxies!), it is sufficient for δ to tend to 0 as t tends
to 0, whereas the metric perturb must remain nonzero as
t tends to 0. Novikov found h ∼ 10−2 to 10−3 as t tends
to 0, corresponding to galaxy clusters.

Vector (Rotational) perturbs case exhibits differences
from Hubble expansion. The solutions show that metric
perturbs grow as time approaches zero, leading to the
conclusion that initial rotational perturbs are incompat-
ible with a Friedmann model. This conclusion is impor-
tant in any discussion of galaxy formation in the vortex
theory.

Tensor perturbs have two independent polarizations
for a given wave vector. If the wavelength is less that
ct , the solution describes a wavelike gravitational field.
So when the wavelength becomes less than the horizon
size, usual energy density computations apply:

Amplitude h ∼ (1 + z) ∼ a−1, and energy density e ∼
(1+z)4 ∼ a−4 . The wave velocity is c . The density and
velocity perturbs are not connected with gravitational
waves.

Matter (coming?) velocity relative to perturbed co-
ordinates is zero in the field of a gravitational wave, but
particle velocities do change, so a sphere becomes a time-
varying ellipsoid in the directions perpendicular to the

velocity of the wave. If the wave passes through an ideal
fluid, energy is not dissipated, so entropy does not grow
and new waves are not created. Viscosity would change
this

Entropy perturbs could arise as inhomogeneities in the
eqn of state, with one approximate form being

P = e/3[1−B(x)e−1/4], (6)

with consequent effects on the metric and motion. Ini-
tial entropy perturbs would give rise to adiabatic density
perturbs, and, in particular, to growing-mode adiabatic
perturbs if the wavelength is sufficiently large, though
this is not a relativistic effect. Entropy perturbs corre-
sponding to masses between one solar mass and 104 solar
masses would only cause decaying RD plasma oscillations
before recombination. For masses greater than 104 solar
masses, the entropy irregularities are preserved. Such
perturbs could be related to the formation and evapora-
tion of n PBHs, leading to entropy production, possibly
all entropy!y!

One interesting idea is a quasi-isotropic solution with a
uniform distribution of perturbs described by this metric:

ds2 = (cdt)2 − [t× a(x) + t2b(x) + . . . ]dxdx (7)

The functions a and b are of the spatial-metric type,
with 3x3 indices, and x is a spatial vector.

A general result is that Friedmann behavior near the
singularity is compatible with density perturbs and grav-
itational waves, which may not be small, but not with
vortex perturbs. Thus the quasi-isotropic solution, or en-
tropy perturbs, represent cosmo solutions not in conflict
with the present state of the Universe, deviating least
from the strictly homogeneous solution,

Perturbs whose wavelength is comparable with the
size of the Universe requires analysis with math beyond
plane-wave theory. Assume ω unequal to unity to exclude
the flat model. The ratio of the wavelength of the perturb
to the radius of the model is constant during the expan-
sion. Solutions are constructed similar to the methods
for constructing spherical harmonics. Scalar functions
are considered.

Some remarks about the possible periodic distribution
of quasars as a function of redshift.

The concluding remark in this chapter is as follows:

ZN: ”One indeed ought to expect that the spherical-
wave method will find wide application in the theory
of perturbations of the homogeneous, isotropic Universe
in the very near future.” N.B.:This is a prediction from
1975!.

LF: See slide 43 interpreting the CMB Planck observa-
tions as a function of the spherical harmonic parameter
l, a result from 2009 and later, as well as from WMAP
from 2001 and later.
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JUNE 15 SUMMARY

13: Statistical Theory

Any small perturbation can be represented as a linear
combo of independent plane waves. Further steps are to
examine wave interactions and to solve nonlinear prob-
lems.

Galaxy forms and locations are random, suggesting
random initial perturbations and a statistical descrip-
tion of the Universe subject to the fundamental laws of
physics.

An initial assumption of density perturbations in boxes
fails because of interactions among neighboring boxes.

Consider instead a plane wave expansion of the density
perturbations:

∆ρ =
∑
k

(AkΨk(x) (8)

where Ψk(x) = V −0.5e(ik·x)

(Deltarho = Sumk Ak * Psik(x) where Psik(x) = V**-
0.5 * exp(i*k dot x))

The Ψ functions satisfy orthonormal conditions. A
convenient dimensionless quantity is

∆k = [k3/(2π2 ∗ n)] ∗
∑
k

(|Ak|)2. (9)

If for all k ∆ is small, then the density perturb is small.
For a bounded volume V = L3, then kx = 2πnx/L,

etc., where the n values are whole numbers.
A reasonable definition of a random function is one

whose Fourier coeffs are random, and the randomness is
not resolved by the physical interaction while the perturb
is small. The randomness hypothesis is connected with
the idea that we can choose many different volumes in
the Universe. Each has a definite density function and
a single set of amplitudes Ak. How often is a given Ak

value encountered? l
Let Ak = Bk + iCk and consider over N volumes and

respective k values the probability P (B,C, . . .) for the
appearance of given values of the Fourier coeffs. A nat-
ural form for this probability is proportional to

e(−B2
k/[2∗β

2
k]) ∗ e(−C2

k/[2∗γ
2
k]) (10)

At an early stage near the singularity, the integral
which determines the Fourier coeffs reduces to a sum over
causally disconnected regions (if there is no period “be-
fore the singularity”). Hence the assumption of a normal
distribution for the Ak is natural.

Even for small inhomogeneities of 10-20%, the as-
tronomer wants to know their form and amplitude, not

Fourier coeffs. While the average value of δ vanishes at
each point of space, the average of its square does not.
The properties of the Fourier series leads to

⟨δ2⟩ =
∑
k

⟨A2
k⟩/V (11)

With normal distributions for Bk and Ck, we then find
for the prob that a given value of δ is obtained at any
given point, with ∆ the same for all points and indepen-
dent of time,f

P (δ) = [1/(2 ∗ π ∗∆)0.5] ∗ e(−δ2/[2∗∆]) (12)

Note well: δ and ∆ represent different quantities; δ is
the dimensionless density amplitude.
This function describes the amplitude of the inhomo-

geneities, but says nothing about their spatial structure
The correlation function f(r) characterizes their spa-

tial structure, with

f(r) =
⟨[δx ∗ δy]⟩

⟨δ2⟩
(13)

and where r = x− y
This correlation function will be positive for small val-

ues of r , but its sign will vary for larger values. The
natural conclusion is that the first zero of this function
will define regions with the same sign of δ. For example,
if f(r) is given in terms of the spectral function βk char-
acterizing the amplitude of waves of various length and is
concentrated in a narrow interval around a wave number
k0, then the first zero is at r0 = π/k0 , half a wavelength
When has a significant fraction of the mass passed into

gravitationally bound objects? Suppose that the βk with
k < kJeans grow with time as a consequence of gravita-
tional instability. Fragmentation will have occurred when
the growing ∆ is of order unity.
A good and simple description of the matter inho-

mogeneity is given by average mass and its deviation
through

µ =
⟨δM⟩
⟨M⟩

=

√
⟨M2⟩ − ⟨M⟩2

⟨M⟩
(14)

Assume that all matter is distributed in the form of
isolated bodies of mass M1 with average density ρ1, so
the number density of bodies is ⟨ρ⟩/M1 and the volume
of each body is v = M1/ρ1. Then µ has the following
behavior:

1. For ⟨M⟩ ≫ M1, many bodies are found in the vol-
ume under consideration, so µ is small and tends
to zero as ⟨M⟩ tends to infinity
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2. If (⟨ρ⟩/ρ1)∗M1 < ⟨M⟩ < M1, then sometimes there
is only one or not even one body in the volume
under consideration and µ ∼

√
M1/⟨M⟩ > 1 For

⟨M⟩ < ⟨ρ⟩ ∗ M1/ρ1, i.e., for ⟨M⟩ < ⟨ρ⟩ ∗ v, the
volume under consideration is less than that of a
single body and

3. µ ∼
√
ρ1/⟨ρ⟩ > 1

How does µ behave for ⟨M⟩ ≫ M1, for objects con-
taining many of the smaller bodies? Naively, much as
does a statistically independent distribution distribution
of particles. The average number of little bodies in such
an object is ⟨N⟩ = ⟨M⟩/M1, while

µ = ⟨δN⟩/⟨N⟩ = 1/
√
N =

√
M1/⟨M⟩ < 1 (15)

for ⟨M⟩ > M1

But this is not always correct. There is no universal
description of the behavior of the function µ since it de-
pends on the isolation process. Indeed, a study of the
processes in large volumes containing many objects and
leading to small µ values can give valuable info about the
universe and its large-scale structure.

The law δN =
√
N is only obtained given a ran-

dom—not correlated—arrangement of discrete objects in
space, corresponding to the hypothesis of a God who,
from outside, sows space with galaxies and that they
fall into regions independent of how the preceding ones
are distributed. But this hypothesis is evidently unac-
ceptable, since gravity from existing objects affects the
growth of small perturbs. An evolutionary formulation
is necessary from a uniform distribution. Seemingly per-
turbs grow from the inflow of matter from neighboring
regions. But this reasoning is not valid in the case of
gravitational instability, taking account of the long-range
nature of gravity.

Considerations of Jeans theory allows one to say that
the increase of matter at the center (in a spherical con-
figuration) is not from neighboring regions, but from in-
finity! Thus there is not an anticorrelation among neigh-
boring galaxies.

The final conclusion is that the fluctuation law δN =
f(N) for the distribution of discrete objects depends on
the law for the original small perturbs. In principle,
δN ∼ 1/N1/6 or δN ∼ N2/3 are possible, depending on
the spectrum of small perturbs. Observational studies
can give insight into the initial state.

Concerning limitations of the linear theory, the first is
that it is practically difficult to calculate the properties
of a surface of given δ for a distribution function whose
Fourier expansion is specified. Second, there are concep-
tual problems in matching the topology of regions with
particular δ values, as small islands say, with the topol-
ogy of known astronomical objects.

The root of these difficulties is that astronomical ob-
jects result from strong nonlinearities, which are ad-
dressed in the next chapter.

14: Nonlinear Theory and Thermal Instability

Three ways to approach the nonlinear problem, possi-
bly in combination:

1. Exact solution with special initial conditions;

2. Approximation method for extrapolating the linear
solution to the general case; and

3. Qualitative explanation of the properties of the
general exact solution.

Spherically symmetric perturbs can be analyzed ex-
actly because the effect of neighboring perturbs vanishes.
Second method takes account of the tidal action of neigh-
boring perturbs, but this is an approx.
Analyses are only for dust, for which pressure vanishes.

The simplest spherically symmetric case is of a sphere
with perturbed density Ω′ on a Friedmann background
with Ω, where Ω′ > Ω. With no extra mass, there is a
hole in the shell outside the higher density region.
If Ω ≤ 1, then the two cases Ω′ ≤ 1 and Ω′ > 1 are

possible. In the first case, the perturbed sphere expands
indefinitely and a bound object does not form. In the sec-
ond the perturb behaves as a closed Friedmann model,
going from expansion to contraction and eventual recol-
lapse. In this “Swiss-cheese model”, the many such per-
turbs do not affect the average expansion. Differences
occur if there is not initial symmetry or inhomogeneity.
If there is pressure, then infinite density does not occur
over the whole volume simultaneously, leading to shock
waves and nonzero pressure and entropy.
In the early moments of the solution, when the un-

perturbed density is large and perturbations small, what
critical perturb amplitude leads to the formation of grav-
itationally bound objects. The answer is

∆crit =
3

5

1− Ω0

Ω0(1 + z)
(16)

14.2

From observations in the expanding Universe, the am-
plitude of density perturbs become of order unity when
the linear size of inhomogeneities is much less than the
horizon ct and the radius of curvature a . Thus a linear
perturb theory loses its validity when the use of Newto-
nian physics remains valid, i.e. when relativistic effects
are insubstantial. Additionally, there are cases where
gas pressure negligibly affects perturb growth, especially
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adiabatic perturbs during the prerecombination era RD
era. Below we consider post recombination effects of such
perturbs.
Eulerian coords r of particles are written as functions

of their Lagrangian coords s as

r = a(t)s+ b(t)x(s) , (17)

where the first term corresponds to unperturbed mo-
tion. Neglecting the second term, we find

u =
dr

dt
= s

da

dt
= r

1

a

da

dt
, (18)

which is the Hubble expansion law. Thus the La-
grangian coords s are defined as the comoving cords of
the unperturbed motion. The second term describes per-
turbs, exact for small, growing perturbs; we shall use it
even for large density contrasts.

Earlier it was shown that in the linear approx and when
P = 0, a perturb of any form grows, but its form remains
unchanged:

δ = δ0
r

a
ϕ1(t) (19)

and

w = w0
r

a
ϕ2(t) (20)

But we also stipulate that, while the density distribu-
tion is arbitrary, the peculiar velocity w is vortex-free.
A reformulation incorporating this condition is that w0

is derivable from an arbitrary potential, w0 = ∇ϕ; then
∇× w0 = 0. We assume too that the δ0 = −∇ · w0.
In the construction of the approx nonlinear theory, we

select as an extrapol the linear formula w = w0(s)∗ϕ2(t).
The peculiar velocity is then

W =
dr

dt
−Hr =

1

a
(a

db

dt
− b

da

dt
)x (21)

The Hubble parameter is 1
a
da
dt , x(s) is vortex-free, and

ϕ2 and b re related. This variant of the linear approx is
useful for the following qualitative reason. In the absence
of other forces, the exact solution takes the form

r = a0ts+ tv(s) + s (22)

Then particle trajectories intersect and infinite density
is achieved. Clearly the perturbs are large near this sin-
gularity. But in the general case, the sing. Takes the
form of a 2D surface. Only for degenerate cases does the
intersection occur along a line or at a point. Now take

into account grav. forces: near the 2D sing these forces
are finite, so they do not exert a drastic influence on
the perturb growth and do not seriously affect the gen-
eral picture. Thus it is reasonable to to seek a solution
for large perturbs in a form valid for small perturbs and
small gravitational forces. And it becomes easy to calcu-
late other quantities such as the density and the velocity.
For a given r(s), the density equation in Lagrangian co-
ords is exactly soluble.
In the linear approx, b(t) is well known and density

perturbs are proportional to the ratio b(t)/a(t), also well
known.
The density can be rewritten in this form:

ρ =
⟨ρ⟩

[1− (b/a)α][1− (b/a)β][1− (b/a)γ]
(23)

Here, α, β and γ are functions of s only, while b/a is
a universal function of t (depending on ω0 also), conve-
niently expressed in terms of z . The generally unequal
functions α, β and γ depend on the specific form x(s)
of the initial perturb and thus characterize the deforma-
tion along the three orthogonal axes of the deformation
tensor. For definiteness, choose α > β > γ. V v
While the case α < 0 is possible, if α > 0, then [α(b/a)]

grows and can reach unity in the course of the evolu-
tion. Then it follows from the density equation that the
density becomes infinite there. This arises as a result
of the 1D contraction along the axis related to α. The
picture that results is that when the perturbs become
sufficiently large, flat pancakes of collapsed dust form in
various places.
This general picture is supported more generally. It

is necessary to note that contraction along one coord
can be accompanied by contraction or expansion in the
plane of the pancake. Based on a complicated probabil-
ity distribution function (pdf) for α, β and γ obtained
by Doroshkevich [LF interpretation of the text; note too
that this pdf is given in the text], only 8% of the matter
contracts along all three axes, while 84% contracts in one
direction but expands in one or two.
The value 8% is close to Oort’s estimate of ∼6% that

matter is compressed in all three directions. It is however
not evident that only this 8% eventually becomes grav-
itationally bound. [see Oort, J.H. 1958, in La structure
et l’evolution de l’univers, 11 Conseil de Physique Solvay
(Brussels: Stoops) and 1970, Astronomy. Ap., 7, 384].
Physical applications of this pancake picture will be

discussed in the next chapter.

14.3

In nonlinear spectral theory, the approx solution for
dust can be written as functions of spatial coords multi-
plied by functions of time.



11

Consider now the case where pressure is large, impor-
tant for processes before recombination or small-scale en-
tropy perturbs after recomb.

In the linear approx, the eqns for Fourier amplitudes
satisfy second order, time dependent dif eqns so the am-
plitudes Ak are independent of one another, and the Ak

can vanish.
In the nonlinear case, the eqns become

a
d2Ak

dt2
+ b

dAk

dt
+ cAk = F (Ak′ , Ak′′ ) (24)

thus harmonics of the original spectrum can arise and
Ak = 0 initially can change to Ak > 0 or Ak < 0 subse-
quently given a nonzero function F. Higher order approxs
are possible, but we shall not consider them.

The function F will describe an interaction yielding a
new wave vector k = k

′
+ k′′ . Basic physical results of

the nonlinear interactions are as follows:

1. Neglecting viscosity, interacting longitudinal waves
will not lead to the emergence of transverse waves.
Consequently, in the quadratic (second-order) ap-
prox, vortex-free motion only gives rise to vortex-
free longitudinal waves.

2. Since the interaction of transverse waves gives rise
to longitudinal waves, density perturbs can arise
in the second order—as well as for higher orders.
Therefore the amplitude of short-wave acoustic
density perturbs generated is of order δ ∼ (u/b)2,
where u is the amplitude of the transverse motion.
Given vortex (turbulent) motions in the prerecom-
bination RD plasma, this turbulence leads to large
density perturbs after recombination, when radia-
tion pressure ceases to act on the matter.

3. The interaction of short-wavelength (λ < λ0) lon-
gitudinal perturbs leads to long-wavelength longi-
tudinal perturbs (including growing density per-
turbs). If the initial spectrum falls sufficiently
steeply on the long-wave side, then this process is
the most important source of density fluctuations
on large scales. Under reasonable assumptions the
newly created (by the nonlinearity) long waves sat-
isfy Ak ∼ k2, leading to

δM
M

∼
√
(Ak2 × k3) ∼ k7/2 ∼ M−7/6 (25)

This is explained below, but is evidently the ex-
treme case of a huge number of short-wave perturbs
combined with the initial absence of long wave-
length perturbs.

4. Longitudinal waves with a wavelength λ > λ0

for some λ0 generate short waves by the nonlin-
ear interaction, important for cosmology. In ac-
cord with the linear theory, viscosity suppresses

long-wave perturbs corresponding to masses M <
MJ ∼ 1012M⊙. However, continuous generation
maintains the perturbs in this wavelength interval.
Shock waves may arise from these short waves. The
emergence of a shock wave leads to entropy growth,
whose fluctuations remain even after the longitudi-
nal acoustic waves decay.

Nonlinear wave interaction theory is currently incom-
plete. But here are some properties of the general theory.

In an equilibrium situation, statistical mechanics says
that each degree of freedom has the same energy θ; then
Ak ∼ θ1/2 , must be a solution to the kinetic eqn corre-
sponding to dAk/dt = 0 on the left-hand side (LF—the
kinetic eqn?).

The equilibrium laws do not depend on the specific
interaction mechanism. Creation of waves k = k′ + k′′

must be accompanied by the reverse, keeping the Ak at
their equilibrium values. The theories of turbulence and
fluctuations are always concerned with nonequilib situ-
ations with amplitudes in a small part of phase volume
(values of k much smaller than the inverse interatomic
distance) much higher that thermal motion amplitudes.
Therefore we are usually concerned with a stationary but
nonequilib situation.

In diffusion eg, with turbulence or fluctuations, there is
ordinarily a flow of energy to the short-wave side, where
the energy transforms into heat. In situations where
Ak → 0 as k → 0 in part of phase space, a flow of energy
in the reverse direction is possible. Keep in mind that
equilibrium is characterized by ⟨Ak⟩, which is quite ap-
propriate because the phase of the Ak is random and the
distribution of the |Ak| is Gaussian.

But these assumptions do not always apply to the spec-
tral distributions under consideration here. For “pan-
cakes” there is a density distribution with a large am-
plitude for short waves, which are not random. They
are correlated with the long waves, all of which together
form the flat pancake! Consequently, in problems con-
cerning the emergence of pancakes and problems con-
cerning shock waves, the spectral approach is worse that
the direct approach of analysis in spatial coords.

14.4

Consider the question of the formation of large-scale
clusters from discrete objects. There are two possible
causes. The first is the presence of small perturbs of
large linear dimensions in the initial perturb spectrum,
which grow via gravitational instability. When their non-
dimensional amplitude reaches unity, the matter has be-
come clustered on the large scale. The second is due to
nonlinear effects, which give birth to long-wave perturbs
from short-wave ones.
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Let the part of the spectrum of interest have an am-
plitude δM that is a “not too fast” decreasing function
of M . In this case small units, discrete gravitationally
bound bodies—are formed first but distributed in space
nonuniformly due to the presence of weaker perturbs on
larger scales.

Formation of larger units depends on the initial spec-
trum, independent in the first approx of the smaller scale.
The growth of perturbs of 1015M⊙ is the same for a gas
of H atoms as for a gas whose elementary units are star
clusters with mass of 105M⊙. Assume the density per-
turbs at recombination satisfy

δrec = δρ/ρ = b0 ×M−ν (26)

for M > M1 ; and zero for smaller M .
For the growth law with Ω0 = 1,

δ = δrec × [(1 + zrec)/(1 + z)] = δrec × (t/trec)
2/3. (27)

Formation of discrete gravitational bound bodies will
be when δ(M, z) = 1, so the first appearance of bodies
with mass M1 occurs at time t1 or z1 given by

∆ = b0 ×M−ν
1 × [zrec/(1 + z1)] = 1, (28)

yielding

z1 + 1 = zrec × b0 ×M−ν
1 (29)

The growth of mass occurs via the unification of
smaller masses M1 into a discrete bound aggregate with
mass M , but this does not change the law

M(z) = M1 × [(1 + z1)/(1 + z)]1/ν (30)

Consider the case of an upper spectrum cutoff δ = 0
for M > M2. The short wave perturbs with k > k2
(corresponding to M2) in the process of growth are pro-
ducing long-wave perturbs by nonlinear interaction . The
Fourier amplitude of these new modes is Ak ∼ k2. The
corresponding density perturbs in a volume containing a
large average mass M , much greater than M1, is given
by

δ(M) = (A2
k × k3)1/2 ∼ M−7/6 (31)

for k = M−1/3

By dimensional considerations, we obtain from
δ(M1) = 1 at t = t1 the coefficient in this formula, lead-
ing to the final conclusion for the growth with time of
bound masses in the expanding Universe:

M = M1 × (t/t1)
4/7 = M1[(1 + z1)/(1 + z)]6/7 (32)

This law must be called a “self-similar clustering law”
for every sufficiently steep initial spectrum (with ν >
7/6) for the case of absent or very weak long-wave per-
turbs. The ν = 7/6 , M ∼ t4/7 law corresponds to the
clustering of great masses, causally dependent by non-
linear effects on the early formation of small masses M1.
These considerations are especially important in the anal-
ysis of entropy perturbs, where the natural assumption is
that the smallest units M1 are of the order of the Jeans
mass after recomb, of order 105 or 106M⊙ if the H tem-
perature is equal to the RR temp.

Another case depends on a random (“white-noise”) ini-
tial fluctuation spectrum with δ ∼ M−.5 and ν = .5;
though the white noise spectrum has no foundation in
cosmology, it leads to a growth law M ∼ t4/3 ∼ (1+z)−2

and Mmax ∼ 1012M⊙.
The simple clustering theory operates with the average

bound mass only.
Thermal instability could lead to a separation of a ho-

mogeneous gas into phases, namely dense cold clouds and
low-density hot gas between them. Though unrelated to
gravity, its effectiveness decreases for long waves. There-
fore it is characterized by an optimal scale size. This
is not the mechanism for separation of the cosmological
plasma into discrete bodies, but could be important for
galactic situations such as the formation of stars.

15: Theories of Galaxy Formation

15.1 Introduction

Several theories for galaxy formation in the hot model
are in competition. But common are the assumptions
that in the RD period (before recombination) the plasma
is almost homogeneous and that the present-day struc-
ture arises after recombination (z < 1400). First, we
shall discuss briefly four explanations for the deviations
from homogeneity. (I shall not repeat historical notes
given by Z&N—LF),

First, adiabatic perturbs are defined by the property
that the ratio of numbers of baryons to photons is con-
stant. In the period when radiation is predominant, adi-
abatic density perturbs represent acoustic oscillations for
M <∼ 1017M⊙. After recomb, the perturbs grow in accord
with the law governing gravitational instability. Tak-
ing account of photon viscosity and damping of acous-
tic oscillations leads to a characteristic perturb mass of
1013M⊙, close to the observed mass of galaxy clusters.
During the nonlinear stage of growth, disks (pancakes)
arise and the gas is heated by shock waves. The great
diversity of gas states allows explanations for such var-
ious objects as quasars and elliptical and spiral galax-
ies. There is a possible explanation for galactic rotation
and magnetic field. Adiabatic perturbation theory uses
rather small initial metric perturbs — 10−3 to 10−4 in
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dimensionless units — of the ideal cosmological model to
obtain presently observed structure.

Second, perturbs of fluctuations in the ratio of baryons
to photons are termed entropy fluctuations. In this
model, the metric and the expansion dynamics do not
“feel” any perturbs during universe evolution when ra-
diation is predominant. Immediately after recomb, the
neutral gas with T ∼ 4000K is not homogeneous. This
temperature and the average density determine the Jeans
mass MJ ∼ 5 × 104 × Ω−.5

0 ×M⊙. Large scale perturbs
grow scale independently if M ≫ MJ , while smaller scale
perturbs do not grow at all.

A falling initial mass spectrum for perturbs is most
probable. Then objects with the least mass consistent
with the Jeans threshold form first, this minimum mass
being >∼ 5 × 104Ω−.5

0 × M⊙; in other words, gas pres-
sure limits this mass from below. Assuming instead that
pressure is substantial leads to the formation of spherical
bodies, not pancakes. We have tried to obtain the en-
tire Universe structure from such entropy perturbs. An-
other tack suggested that objects with a mass of order
105 − 106 transform into globular clusters, their unusual
similarity previously unexplained. To explain the entire
Universe structure, one could set the initial spectrum of
entropy perturbs “by hand” so that the amplitude at
about 1013×M⊙ is just that required to obtain at present
δM/M ∼ 1. Then the results are roughly the same as ob-
tained for adiabatic perturbs.

Third is the hypothesis of a charge-symmetric Uni-
verse, with annihilation where particles and antiparticles
intermingle. However, the resulting gamma rays — from
p+ p̄ → π0 + other particles, and then π0 → 2γ — have
not been observed in the interval between 50 and 200
MeV. There are other arguments against this hypothe-
sis, which has several variants.

Purely in theoretical grounds based on charge symme-
try, a symmetry that CP violation shows is not exact,
there is no reason to choose a charge-symmetric initial
state of the Universe or a charge asymmetric initial state.

One aspect of charge symmetry is connected with en-
tropy fluctuations. Until we examine a plasma with pho-
tons and baryons, it is natural to assume that the baryon
density varies while the photon density is uniform. When
we consider times t < 10−6s , when kT ≥ massp × c2 ,
and there are many baryons and anti baryons and as
many photons, nB/nB̄ = 1.00000001 on average and ap-
pearances change. It is necessary to adopt this initial ra-
tio ( nB −nB̄ ∼ 10−8nB ) because those baryons present
today are the survivors of the annihilation when the tem-
perature decreased below∼ massp×c2. Undoubtedly the
early stage of the hot Universe is quasi-=charge-symetric!
But there must be a baryon excess and moreover, in the
theory of entropy fluctuations this excess is not spatially
uniform!

These fluctuations are very large compared with “sta-
tistical” fluctuations of order N−.5 Indeed, M = 106 ×

M⊙ corresponds to 1063 baryons, so N−.5 ∼ 3 × 10−32.
But in the hot Universe with entropy we use δnB

/nB ∼
10−10 before annihilation and ∼ 10−2 after annihila-
tion. Although these numbers are very different, both
are much greater than 10−32. Although the fluctuations
are not “statistical”, one can suppose that the smaller
the scale, the larger the fluctuations. Then the assump-
tion is not excluded that on some scale the fluctuations
lead to an average baryon surplus of 10−8. This leads
to 0.99999997 < nB/nB̄ < 1.00000005. This means
that at the conclusion of the annihilation process, there
are regions of matter and antimatter in which nB/nγ ∼
5 × 10−8 and nB̄/γ ∼ 3 × 10−8 respectively. Thus the
entropy-fluctuation hypothesis is naturally linked with
the hypothesis of charge symmetry.

Fourth is the vortex theory, whereby the plasma of
protons, electrons and photons is in turbulent motion su-
perposed on the general expansion. The velocity of this
motion is or order (0.05−0.1)×c and the maximum scale
of the motion is much less than the horizon at recombina-
tion. The turbulent theory predicts a definite spectrum
for the motion and a condition connects the scale, veloc-
ity and time to establish the motion. One parameter, eg
the maximum scale L for the correlation, fixes the entire
picture. It is also presumed that turbulence is subsonic
during the RD state, so radiation pressure prevents den-
sity deviating from the average.

An estimate of the pressure and density fluctuations
follows from oppositely moving fluid volumes creating a
pressure difference of order δP = ρ× u2, small compared
to P = ρ × b2, with b the sound speed and u the fluid
speed. Correspondingly,

δP /p ∼ δρ/ρ ∼ u2/b2 ≪ 1. (33)

A spreading out and breaking down of the flow thus oc-
curs, so the motion hardly differs from that of an incom-
pressible fluid. When recombination ensues, the pressure
cuts off and the sound velocity goes to zero. The motion
then continues in accord with its inertia. But the incom-
pressibility is not preserved and collisions between gas
clouds disturb the inertial motion. The clouds first heat
because of compression and shock waves, but later they
cool. Gravity then begins to act and regions of increase
density transform into bound objects when z ∼ 130 (in
contrast to z ∼ 5 in the adiabatic theory).

The most important feature of the vortex theory, the
rotation of the galaxies and clusters is thus inherited from
the initial vortex motion of the plasma before recombina-
tion. One difficulty is that it is incompatible with small
perturbs to the Friedmann model. Another is the dif-
ficulty of reconciling the turbulence theory with RR ob-
servations with respect to this parameter (which I under-
stand to mean the aforementioned red shift events—LF).
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15.2 Begin here after July 20, presumably on August 24.2

Now considered is the evolution of perturbs after re-
combination (z <∼ 1400), carried to the stage of formation
of gravitationally bound isolated masses. Limit the anal-
ysis to perturbs arising from initially adiabatic perturbs.
Five properties are important:

1. The motion is derivable from a potential, so the
vorticity is and remains zero, until a shock wave is
formed;

2. The initial perturbs are small at recomb, so that
afterward the perturbs remain small and linear the-
ory is valid for a prolonged period;

3. Linear theory is applicable before recombination
and at an early stage the perturb amplitude is
an approximately smooth function of wavelength;
The wavelength interval for galaxy formation is not
wide, with a power law applying for the amplitude:

Ak ∼ kr. and
√
δM ∼ M−ν (34)

√
δM was introduced earlier so that the exponents r

and ν are related by ν = 1/2+1/3×r. Damping is
also important and depends on a parameter M0 ∼
1013 ∗M⊙. Its meaning is that perturbs decay for
scales corresponding to masses M < M0 and they
do not for masses M > M0 .

4. After recombination, a restructuring of the motion
takes place whereby growing perturbs develop that
have an amplitude

√
δM = M−n × e−(M0/M)1/3 (35)

with n = ν + 1/3

The formulae presented here are valid for scales
such that the perturbs become acoustic waves be-
fore recombination, ie for M < 1017 × M⊙ . The
distinction between n and ν relates to the propor-
tionality between δρ and u×t/l for a growing mode
in the postrecomb era.

5. After recombination one can neglect the pressure of
the neutral gas when studying perturb evolution.
The basis for this is that M0 ≫ MJ , where MJ is
the Jeans mass for the neutral gas. As a result,
the approx theory for the the growth of perturbs in
dust is applicable.

By virtue of the first and fifth points, according to
the approx theory, regions of infinite density arise. The
nearest gas particles encounter the dense region and are
stopped. We will therefore examine the motion of the
gas, its heating by shock waves, and the subsequent fate
of the compressed gas.

15.3 Shock Waves

{Math for shock wave description mostly too confusing
for now—LF}
From a previous consideration of the approximate so-

lution, infinite density occurs when this condition is met:
α(q)× (b/a) = 1. This leads to a contraction of an ellip-
soid (q is a vector) in one dimension to a flat figure — an
ellipse aka pancake with infinite density. The mass of the
ellipsoid grows in proportion to (t − tc)

1.5 , where tc is
the time when the density becomes infinite in the plane
qx = 0 and x = 0. For a one-dim model with a single
sinusoidal wave and with ω0 = 1 , the density will be

ρ = ⟨ρ⟩ × [1− κ× (b0/a0)× t2/3 × cos(κ× qx)]−1, (36)

with ⟨ρ⟩ = 1/(6πGt2) .
Now define µ = κ× qx/π, a type of Lagrangian coord,

which is the ratio of the mass included between the origin
qx = 0 and a given qx to the total mass in half of a period
cell.

In the general case, the amount of matter at each point
of the pancakes surface grows as

√
t− tc′ , with different

values of tc′ at different points in the plane of the pan-
cake, whose surface grows as (t− tc′).
It is particularly necessary to notice what matter is

subjected to shock compression. It is the matter which
does not manage to achieve infinite density as the nearby
layers approach and also the matter which is expanding.
For t ≪ tc (during the linear stage) half of the matter
contracts and half expands. See Table I.

TABLE I. Characteristics of Shock-Wave Compression

t/tc z/zc µ

1.0 1.0 0.0
1.025 0.983 0.1
1.33 0.83 0.333
1.96 0.64 0.5
6.1 0.30 0.76

28 0.1 0.9
Infinity 0.0 1.0

A computation gives, conveniently in terms of µ as
the independent variable, the speed u at which the shock
wave strikes the matter and the matter density in front
of the shock wave ρ. Characteristic is the behavior for
small values of µ, equivalent to small values of t − tc or
zc − z :

u ∼ µ ∼ (t− tc)
.5 ∼ (zc − z).5 (37)

and

ρ ∼ µ−2 ∼ 1/(t− tc) ∼ 1/(z − zc) (38)
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and P approximately constant.

Consider the opposite limit, the complete absence of
heat losses and transfer. Complete computations re-
quire numerical methods, but the asymptotic behavior
at the beginning of the contraction, when µ ≪ 1, can be
found simply. The pressure has a definite limiting value,
larger than the first case by 11/9. = 1.22, in the same
limit, the amount of matter compressed by a hot shock
is (11/9).5 = 1.1 times larger that the amount of matter
compressed by the shock with instantaneous cooling of
the gas. This is because the in the hot case the shock
propagates from the plane x = 0 toward the infalling
matter.

The average density of the compressed matter is 12
times larger that the matter density in front of the shock
before compression, ie, three times greater that immedi-
ately after the shock. Figure 46 shows the density dis-
tribution at tc, when ρ = infinity is achieved in the
plane x = 0. Figure 47 gives the distribution at time
t = (7/6) × tc, when about 1/4 of the matter is com-
pressed. Figure 47 applies to rapid cooling, and Figure
48 to the adiabatic case. 1 h

NOTES BEGINNING AUGUST 30

From these formulae, when 10% of the matter is com-
pressed by the shock (µ = 0.1), this matter occupies a
fraction α = 3 × 10−4 of the volume, so its density is
300 times greater than the average. If instead 30% 0f
the matter is compressed, α = 10−2 and the density is
30 times the average. The calculation has assumed strict
adiabatic behavior, hence without heat loss. The true
value of α for a given perturb type can only be smaller
and the true density larger that the values presented.

In the future of the process, a mutual attraction among
the compressed matter layers switches on, leading to a
gravitational pressure. Numerical calcs show that when
t ∼ 4tc, the process dies away. The compressed matter
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is held in place by gravity, the falling of matter is sus-
pended, and the shock weakens. An unrealistically large
time would be needed for the shock to compress even
90% of the matter. Meanwhile, the new processes of ra-
diation, star birth, etc are beginning, and this schematic
picture of a one-dimensional adiabatic compression does
not account for them.

15.4 Thermal Processes in the Compressed Gas

In the adiabatic approximation, the temperature of the
gas compressed by the shock front is

T = 2.5× 106 × zc × µ2 × [M/(1013 ×M⊙)]
2/3 (39)

for asymptotically small µ, for a sinusoidal wave, for
zero initial temperature, and in the absence of heat losses
and transfer. Now renounce the simplifying assumptions
describing the temperature distribution and the thermal
processes. But start from the pressure in the adiabatic
picture. In the unperturbed gas, the compression leads
to a finite density and a finite temperature.

Examining the processes in a homogeneous universe,
we found that thermal exchange between matter and
radiation ceases when z ∼ 200, T = 540K, and ρ ∼
0.8 × 10−22g/cm3 for Ω0 = 1. Subsequently, the pres-
sure, temperature and density are connected by the adi-
abats (isentropic curves) of a monatomic gas, so ρ ∼ P 3/5

and T ∼ P 2/5. Thus, when z + 1 = 5, T = 0.34K for
the unperturbed gas (when the radiation temperature is
14 K) . Upon compression to P = 1.44 × 1012dyn/cm2,
corresponding to the pressure in a pancake if mass M =
1013M⊙, we obtain T = 400 K and ρ = 0.5×10−22g/cm3,
compared to the average matter density then of ρ ∼
10−27g/cm3 . We thus obtain the thickness of an adi-
abatically compressed layer.

Heat losses are computed next, but I shall only sum-
marize the results. Figure 50 shows the density distribu-
tion. The temperature distribution exhibits the opposite
behavior in the sense of a reflection through the mu axis.

1. About 1% of the mater is subject only to adiabatic
compression and has a very low temperature.

2. About 2-3% of the matter is shock heated to
102K − 104K. It is not ionized and cools slowly
thorough adiabatic expansion.

3. About 20% of the matter is shock compressed to
T > 104K. Then it cools to 104K by radiating,
and to a large degree, recombines.

4. About 25% of the matter is shock heated to T >
5× 105K up to ∼ 1.5× 106K and remains hot.

5. Half of the matter is not subject to the shock ac-
tion.

Indeed, it is observationally known that neutral H is
practically absent between clusters. Convincing proof
follows from quasar spectra with z ¿ 2. Neutral H would
totally absorb shortward of the Lyman-alpha line, but
this radiation falls in the spectrum accessible to ground
telescopes. Independent of the detailed pancake theory,
it is inconceivable that there is no matter between galax-
ies, so it is must be completely ionized. A suitable ex-
planation for this ionization is on e of the main problems
facing cosmological theory.
Possibly the ionization is accomplished by the ear-

lier quasars with z >∼ 4, not yet observable directly
{SUPERSEDED?—LF}. Perhaps young bright galaxies
are important. In both cases the radiation comes from
the first pancakes. In any event, the calculational results
depend significantly on the fundamental cosmological pa-
rameters, the Hubble constant and the matter density.
Furthermore, the hot compressed gas clouds — “pan-

cakes” — cannot be observed directly as protoclusters in
optical and ultraviolet against the background of other
nearby sources. X-rays might be observable from the sta-
tistically rare largest clusters.
Finally, it is apparently possible to observe protoclus-

ters via 21 cm radiation from the neutral H in the pan-
cake region where the temp is too small for ionization to
occur. The redshift of the line and the radiation’s as-
sociation with a “pancake” would suggest the pancake’s
epoch. The observational difficulty is related to the lack
of knowledge of the absolute wavelength, unknown now
because of the unknown redshift value at which the com-
pressed gas was formed.

15.5 Cluster Masses and Protocluster Fragmentation

One ought to expect a distribution of masses for proto-
clusters and dependence on the form of the of the pertur-
bation spectrum, i.e., the amplitude change versus wave-
length. The mass distribution will be considered here, as
well as the fate of the isolated gas bodies (protoclusters)
already described. The gravitational instability of the
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protoclusters leads to further fragmentation into galax-
ies and quasars.

To determine the time when nonlinear effects become
substantial in a significant fraction of the matter, i.e.
when a significant part is compressed into pancakes, it
is enough in the first approx to fined the fraction of the
matter satisfying α × b/a > 1. The one-dimensional hy-
dro calcs showed that the amount of matter shock com-
pressed exceeds the amount of matter that, by itself sat-
isfying the same condition in the absence of the shock,
approaches infinite density. By integrating over the dis-
tribution function, one can find the fraction of the matter
compressed as a function of time, which appears in Fig-
ure 51. In the figure, tc is the time when (δρ/ρ)

2 = 1
as calced via linear theory. The dashed curve for cold
clouds is distinguished from the solid curve primarily by
the statistical nature, not by the one-dimensional nature.

More detailed calls show that the thickness of the typ-
ical pancake (in Lagrangian coords) is of order Rc, while
the area is ∼ 30R2

c .

Consider the fragmentation of a protocluster. The pe-
culiarity of the problem is in examining the gravitational
instability of a thin layer of matter with a thickness many
times less than its longitudinal size. Also, the dense, cold
matter is subject to the external pressure of the surround-
ing hot matter, with much lower density. During the ini-
tial pancake growth, this external pressure is greater than
the gravitational forces within the dense layer. Though
the general problem of a thin disk has been much studied,
the problem here is simpler because there is no rotation
and no peculiar velocities in the disk plane.

For a homogeneous disk with given surface density
sigma (in g/cm2), assume

δσ/σ ∼ e(w×t+ik×x), (40)

with k and x two-dimensional, while the gravitational
potential outside the disk is three-dimensional and sat-
isfies the Poisson equation in empty space. Thus the
solution requires a suitable boundary condition at the
disk.

Accounting for the nonzero thickness of the disk and
the pressure, we obtain

w = [2π ×G× σ × abs(k)− P × h× k2/σ]1/2 (41)

Thus, for a disk of nonzero thickness, there is a critical
wavelength analogous to the Jeans wavelength for the
3-dimensional problem:
w = 0 at k = kj = 2π×G×σ2/(P×h); and λ = 2π/kj .
There is also an important quantity not analogous to

anything in the 3-d problem. This is the wave vector
km and the wavelength λ of the most “dangerous” (most
rapidly growing) perturb, for which w is a maximum. It
satisfies km = kj/2 and λm = 2×λ. If the pressure in the
layer is determined only by the weight through gravity of
the matter in the layer, then Pc = π × G × σ2/2 in the
middle of the layer; at the edges, Pc = 0. The average
pressure is of order G × σ2. With σ = h × avg(ρ), this
leads to

λJ = h , λm = 2 × h , and ω = 0.885 × [4π × G ×
avg(ρ)]1/2

An application of this theory is to the disintegration of
a planar protocluster — a pancake — as just described.
The inner, most dense (adiabatically compressed) layer
must disintegrate into masses of ∼ 107 − 108M⊙. A
layer that cools to 104K disintegrates into masses ∼
1011 − 1012M⊙. These latter masses are naturally iden-
tified with galaxies.
A hot gas with T > 4× 105K remains gravitationally

unbound in part and in part forms a hot halo around
masses of 1011 − 1012M⊙, leading to a hypothesis that
the most dense but small masses represent quasars and
galactic nuclei.
With an initial density of 30 atoms / cm3, the aver-

age density can grow with adiabatic compression. After
the formation of the first pancakes, the part of the gas
enveloped by the shock wave is heated to a high temper-
ature. The hard radiation from theses layers then heats
the gas to at least ∼ 103K, but this does not affect the
general picture of the pancakes’ evolution. For pancakes
formed later, the middle cold layer is then not so dense
and cold as was the case for the first pancakes. One might
then assume that the formation of quasars (and galactic
nuclei?) ceases earlier that does the formation of galax-
ies. Possibly the sharp fall in the number of quasars and
radio sources for z > 3 or 4 is related to this circum-
stance.
In the first pancakes, about 1% of the matter passes,

by assumption, into quasars and galactic nuclei. This
agrees with rough estimates derived from the assumption
that the active life of quasars and quasi-stellar radio-quiet
objects extends over 105 − 106 years.
In every pancake with a dense layer, one can expect

the formation of about 100 dense objects. In such a case,
must the quasars be arranged in groups? Observations
do not suggest this {STILL THE CASE?—LF}, and it
should not be so. This follows if one keeps in mind that
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the quasar active period is 105 − 106 yr, many times less
that the 1010 yr cosmological age and the formation time
of the pancakes (3×108−109 yr). At each time we observe
∼ 10−3 of the total dense objects — potential quasars —
so that the average number of observed quasars for each
protocluster is ≪ 1. Expected pairs of quasars must
constitute ¡ 10% of the total number.

Regarding galaxies, the temperature in the layer from
which galaxies presumably form is relatively stable at
∼ 104K; this is determined by the features of the re-
combination law and of the radiation from the optically
thin gas. The gas radiates most when partially ionized,
whence the emission is mostly in lines and in recom-
bination radiation. After recombination, the emission
decreases sharply. Here the temperature that the gas
achieves depends weakly on the history and mass and
formation time of the pancake. This temperature stabil-
ity might well reflect the same scatter in the density of
galaxies from the average density.

15.6 Galaxy Rotation

Is the emergence of rotation possible in a theory if the
initial perturbs are vortex-free? The Kelvin-Helmholtz
theorems say that gravitational forces and radiative pres-
sure are capable during the RD stage of creating only a
potential-type velocity field, i.e., a field with zero vortic-
ity. Before recomb, the density and pressure are uniquely
related to each other and the pressure forces do not give
rise to vortex motion. Finally, viscosity does not give rise
to vorticity in potential-type motion.

In principle, the emergence of vortex motion is not ex-
cluded when potential-type motion leads to shock waves.
However, the effect is likely to be small and we conclude
that adiabatic perturb theory probably leads to vortex-
free motion at recombination.n.

The second aspect of the question concerns the relation
between the body’s angular momentum and its vorticity.
The problem of the emergence of angular momentum in
vortex-free motion is connected with violation of axial
symmetry or to variable density. A general property of
rigid-body rotation is that it represents motion with a
minimum KE for a given total angular momentum, so
that a body isolated from external forces tends to rigid-
body rotation as time passes, absent internal sources of
energy. But rigid-body rotation is vortex motion. Viscos-
ity evidently must give rise to a transition from potential-
type motion with angular momentum to rigid-body rota-
tions; i.e., the viscosity must give rise to vorticity. It does
so by transforming into heat the surplus of KE exceed-
ing the energy of rigid-body rotation with the same ang
mom. Vorticity arises first at the boundary and gradually
encompasses the whole volume.

Further discussion is now necessary of the theorem of
the conservation of of vorticity and the relation between

vorticity and ang mom. Three situations will be consid-
ered to explain how rotation might arise in galaxies and
clusters.

A. Early Postrecombination Period of Small Adiabatic
Perturbs

If we take account of the deviation of the density from
the average value, then in the approximation quadratic
with respect to perturb amplitude, the ang mom of a
sphere differs from zero. For a density perturb amplitude
of order δρ/ρ ∼ 1, the speed is u ∼ l/t, where l is the
scale of the motion and t is the cosmological time. Thus

AngMom ∼ δρ × u× l4 ∼ ρ× l5/t. (42)

Substituting t = (6π ×G× ρ)1/2 yields

AngMom = G1/2×ρ3/2× l5 ∼ G1/2×M3/2× l1/2, (43)

where M = ρ × l3. But this is just the ang mom for
which the centrifugal force keeps the mass M in a disk of
size l.

B. Shock-Wave Induced Compression of the Cooled Gas at
z < zc, after Recombination

In the nonlinear picture, perturb evolution leads to
strong shocks; in this situation conservation of vorticity
no longer holds. Formally, this is connected with the
growing entropy of the shock. When, after the shock
passes, the gas cools from about 4∗105K to 104K, its vor-
ticity is not conserved. In one example, a shock wave co-
inciding with the plane x = 0 compressed the gas by a fac-
tor of 4, so that the motion parallel to the x axis is slowed
by this factor behind the wave front. Examination of the
governing equations shows that the compensation effect
expressed by the equation ∂uy/∂x− ∂ux/∂y = 0, which
leads to vortex-free motion before the shock compression,
is completely absent after the compression. A rough ap-
proach then gives the estimate ∇ × u = H × ρ/Avg(ρ),
where H is the Hubble parameter at the time of compres-
sion. This is based on the nonlinear compression when
the gradients of the velocity perturbs in one direction lo-
cally exceed the Hubble parameter. For a particular set
of values, this leads to an angular velocity and rotation
period of

∇ × u = 1/[7.5 × 105yr] and τ = π/[Abs(∇ × u)] =
2.3× 106 yr.

But this rotation period is 100 times less than what is
observed!
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C. Gravitational Interactions of Discrete Bodies

Consider now the last stage, when the perturbs lead
to spatially separated discrete bodies interacting grav-
itationally. For point or spherical bodies, momentum
could be exchanged, leading to changes in the direction
and speed of motion. An irregularly shaped body has a
nonzero quadrupole moment. This could lead to a change
in the orbital angular momentum of both bodies upon
encounters. Because part of the external field of a body
with a quadrupole moment decreases as 1/r3, closest en-
counters with the other body dominate the interaction.

The torque acting on a given body with mass M1 and
quadrupole moment Q1 due to a second body with Mass
M2 is of the order of

Abs[d(ang.Mom.)/dt] ∼ G×Q1 ×M2/r
3
12. (44)

For passage at the impact parameter b∗, effectively
r12 = b∗ and t ∼ b∗/u, where u is the speed, so

Abs[δ(ang.Mom.)] ∼ G×Q1 ×M2/[(b
∗)2 × u] (45)

A statistical estimate for chaotic collisions follows,
leading to a rough result for the process of separating
galaxies of

δ(ang mom) = (G×M3 ×R)1/2, (46)

where M is the galactic mass and R is the galactic size.
Note that this is just the ang mom necessary that the
centrifugal force of mass M and radius R counterbalance
the gravitational attraction force. An initial quadrupole
moment could arise by the tidal effect of the second body
on the first.
Begin here after August 31, presumably on September

15

15.7 Galactic Magnetic Fields

The origin of a galaxy’s magnetic field is related to
the dynamo effect, the strengthening of a field caused by
the plasma motion. Previously believed insurmountable
difficulties with the dynamo effect led to the proposal of
a specific type of singularity and a comparatively strong
primordial magnetic field frozen in the relic plasma. A
galactic field of about 10−6 gauss is obtained by com-
pression of the magnetic lines of force when the dilute
gas condenses into galaxies. Between galaxies, a field of
∼ 10−9 gauss must remain. This formulation now ap-
pears artificial.

Consider therefore theories describing the generation of
fields within a hot model of the Universe with no primor-
dial field, but with small density and velocity perturbs

superposed on a homogeneous and isotropic Friedmann
solution.

Conservation of ang mom for a sphere of radius R
yields the condition

Ang mom = I×w = (8π/15)×ρ×R5×w = const (47)

During the expansion, R grows, but the total density
falls as ρ ∼ R−4 since the photon density dominates.
Therefore the angular velocity decreases as w ∼ 1/R
while the linear velocity u = w×R remains constant. The
matter density decreases as ρ ∼ R−3. By virtue of ang
mom conservation, therefore, as the expansion proceeds,
the matter alone “would like” to rotate more slowly, with
w ∼ R−2 and U ∼ 1/R.

Under these conditions, the light electrons are dragged
along by the radiation, but the heavy protons fall behind
the rotation of the RD plasma. Given this difference,
there arises an electric current and consequent magnetic
field H directed along the rotation axis. But this in turn
leads to an electromotive force that tends to equalize the
electron and proton velocities. In the first approx, we
assume that the two velocities differ little. We shall then
find the values of H and dH/dt necessary so that the
protons do not lag behind the electrons. Then we shall
verify the difference between the velocities required for
the creation of such a field is actually small. Analysis
of the equations of motion for the protons leads to an
asymptotic solution for the magnetic field

H = −2×mp × c× w/e (48)

In the vortex theory, the motion is examined for which
the scale of the largest vortex equals the product of the
velocity and the cosmological time, which is also the con-
dition for the realization of turbulence. Thus w ∼ 2π/t,
where t is the cosmological time, which at recombination
(or at the end of the RD period) is ∼ 3 × 1012s. With
this value, we find that H = 0.4 × 10−15gauss when
ρm ∼ 3× 10−20g/cm3. The density of matter in galaxies
if less by ∼ 104. If the expansion continues, then the
frozen-in condition — the conservation of the magnetic
flux — leads to a later decrease of H by an additional 102

to a value of 2× 10−18 gauss.

A different mechanism leads to a still smaller value of
10−23 gauss

Thus the field due to rotation turns out to be quite
small in comparison with that observed in the Galaxy,
∼ 10−6 gauss. A satisfactory solution of the galactic
magnetic field problem is thus impossible without making
use of the dynamo effect, which can produce exponential
growth with time. Exact theorems on the impossibility of
a dynamo have been proved for axisymmetric and planar
motion.
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One simple nonplanar situation illustrating rapid
growth is the following: Imagine a torus with cross sec-
tion S and radius R with a field H0. While preserving its
volume, stretch the torus to a radius 2R; the cross sec-
tion decreases ρR/2 but the field grows to 2H0 because
of flux conservation. Now bend the torus into a figure
eight and then fold the two rings into one torus. The lin-
ear dimensions return to the original, but the field is now
2H0. This operation can be repeated indefinitely, with
exponential growth time if each cycle requires the same
duration. One possible governing equation that gives rise
to an exponential solution is

dH/dt = ∇× (αH) (49)

where “X” denotes the cross product. An absolute
upper limit on the growth rate of the field is e(wt), where
w is the angular velocity. With w ∼ 3 × 108/yr and
t = 1010yr, such a law would give an increase of e(300),
more than sufficient. “Only” 1010 − 1020 is needed.
There is no reliable theory, but neither is there a blind

alley. . . .

15.8 The Theory of Entropy Perturbations; & 15.9
The Vortex Theory

While explained in the text, I am skipping these
topics in these notes because they are disfavored
by the authors as explicitly stated at the end of
Section 15.10: . . . From this account it should be appar-
ent that the present authors prefer the adiabatic theory
of galaxy formation. . .

==========================

15.10 A Comparison of the Evolutionary Theories of
Galaxy Formation

The previously stated theoretical assertions are con-
sequences of the initial conditions posited for an early
time, lacking a theory for choosing these initial condi-
tions. Very likely only one set of initial conditions, i.e.,
types of perturbations are likely, though this is a matter
of personal taste.

In principle, this choice could be determined by com-
paring the evolutionary calculations with observational
data about the characteristics of galaxies and clusters,
as well as about the RR and nucleosynthesis.

The subsequent discussion about galaxy formation in
this section will be based on all of the information de-
veloped previously in this book and that to be presented
later, however inconvenient this may be.

Though at present there is no generally accepted the-
ory, we will give our preference with the reasons behind
that choice.

The first choice is that between processes involving the
condensation of a dilute gas versus the explosion of a su-
perdense body. The latter should not be confused with
the overall expansion of the Universe, but rather the ex-
pansion of a “white hole.” However, consider our own
Galaxy, with a mass of ∼ 2×1011M⊙, and an ang. mom.
of ∼ 2 × 1074gcm ∗ ∗2/s; this corresponds to a circular
velocity of 300 km / s at a radius of 10 kpc. But if the
Galaxy formed from an initially superdense body with a
radius of ∼ 1pc, the ang. mom. would have corresponded
to a linear velocity at the equator greater than c, a glar-
ing contradiction. Moreover, the body as a whole would
have been inside its gravitational radius.
This objection is invalid with respect to quasars, be-

cause their ang. mom. is unknown. On the other hand,
the whole idea of exploding white holes has the serious
difficulty that the QM process of particle creation near
the singularity leads to the early explosion of the white
hole [???-LF] or to no explosion at all.
These remarks do not concern ideas about the present

activity of quasars or galactic nuclei, though they limit
the notions of a possible source of of their energy.
Thus the viewpoint of galaxies arising from a dilute gas

is dominant. Then the remaining question is the type of
initial perturbs of the homogeneous and isotropic Fried-
mann model, i.e., between the galaxy formation theories
set forth in the preceding sections.
To begin, consider perturbs near the singularity. Adi-

abatic and entropy perturbs are compatible with small
metric perturbs, with a quasi- isotropic solution. Near
the singularity therefore, such a solution is not distin-
guished by its local properties from a strictly isotropic
and homogeneous solution, so the nucleosynthesis results
are the same. In particular, the mass abundance results
for He of ∼ .26 and for D of less than .0001 are supported
by observations,
The vortex theory requires a substantially anisotropic

singularity, thereby changing the expansion law then.
This leads to quite different nucleosynthesis results, prob-
ably disagreeing with observations: either > 0.3 for He
or ∼ 2.5% for D and 97.5% for H. To avoid the need
for unusual initial conditions, it is much more plausi-
ble to assume that all types of perturbations are equally
represented since a solution with a non-Friedmann-like
beginning approaches a Friedmann form. In that case,
vortex perturbs decay rapidly, entropy perturbs remain
constant, and adiabatic perturbs grow. Thereafter, the
evolution follows the tracks of the theory of perturbs.
Suppose we do not consider the period from the sin-

gularity until nucleosynthesis. Consider instead the later
period from the end of e-e+ annihilation to the present.
This is the period 108 > z > 0, including the epochs
of the RD plasma, He and H recombination, perturb
growth in the neutral gas, structure formation, and the
secondary ionization for the neutral gas not a part of
gravitationally bound objects. Begin with a comparison
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of the theory and RR observations.
A distinctive feature of the vortex theory is the as-

sumption of a large perturb amplitude of a large velocity
for the vortex motions superposed on the Hubble expan-
sion. Another feature, unavoidable, is that vortex motion
does not give rise to density perturbs immediately after
recomb.

In one variant, it was assumed that the velocity of
vortex motion at recomb is of the order of 0.1 − 0.4c.
The corresponding RR temperature fluctuations due to
the Doppler effect are evidently ∆T/T = 0.1− 0.4. But
what is observed is ∆T/T < 3 × 10−4, and other effects
could not have eliminated the incompatibility.

A slow motion variant with a comparatively low initial
vortex velocity of u/c ∼ 0.03 leads to effects that do not
agree with the observed RR isotropy. And what about
the attractiveness of the vortex theory? Is there not an
element of arbitrariness? Are there other consequences?

To explain the current structure of the Universe via
adiabatic perturbs, the metric perturbs must have an am-
plitude of order 0.001 to 0.0001 on a scale corresponding
to a mass M ∼ 1013 − 1014M⊙. One can continue the
perturb spectrum smoothly with the same amplitude to
higher and lower masses. Perturbs of longer wavelengths,
corresponding to much higher masses, grow more slowly
and result in δρ/ρ << 1 today. They also produce RR
perturbs of order 0.0001, which do not contradict obser-
vations. Perturbs corresponding to much lower masses
decay and do not affect the creation of galaxies. If the
amplitude of these perturbs is of order 0.001 to 0.0001,
then upon decay no observable effects remain .

Thus in the adiabatic theory, one can choose an ini-
tial spectrum without any preferred scale by giving one
characteristic quantity—the amplitude—and leaving the
scale of galaxy clusters to the the natural laws. The vor-
tex theory lacks this simplicity, requiring a special choice
of initial spectrum.
From this account, it should be apparent that the

present authors prefer the adiabatic theory of galaxy for-
mation.
Not discussed here is the entropy theory, which in re-

cent years has been made more attractive through new
observations and theoretical analysis.

15.11 Observational Data Concerning the Properties
of Galaxies and Galaxy Clusters; The Average

Density of Matter in the Universe

There are many sources of data, but the parameters of
galaxies and clusters have not been well determined and
error estimates are very subjective.

One parameter is the luminosity function, with the
following cited by Peebles. Given MG as the absolute
magnitude, then the average number of galaxies per unit
volume brighter than MG is

n(< MG) = A×10al×MG with al = 0.75 for MG < MG∗

n(< MG) = B×10bt×MG with bt = 0.25 for MG > MG∗

For MG = MG∗, the two formulas must give the same
answer, so

MG∗ = −19.5 + 5logh0,

with H0 = 100× hokm/s/Mpc.
To astronomers, the most reliable path to galaxy

mass determination follows measurements of the rota-
tion speed and their linear size via Newtons’s law for
irregulars and spirals. For ellipticals, the masses can be
determined via the dispersion in the line-of-sight star ve-
locities. The mass function appears in Figure 52 and the
overall mass contributions in Table 12.

The mass-to-luminosity ratio M/L in solar units is
about 5 for irregulars and about 7-20 for spirals and
about 40 for ellipticals.
Radio observations indicate that the rotation curves of

most spirals are very flat: V(R) = const to galactocentric
distances of 50 kpc. Hence the cumulative (inner) mass
satisfies

M(R) ∼ V (R)2 ×R ∼ R

On the other hand, the spatial luminosity density in
galaxy disks is well represented by an exponential model

I(a) = I0e
(−a/a0),
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So the cumulative luminosity

L(R) ∼
∫ R

0

I(a)a2da

converges rapidly to the total galaxy luminosity Ltot.
The cumulative ratio M(R) / L(R) has a value 3 -10 in
solar units inside of the optically visible spiral boundaries
depending on the stellar population.

The diameters of the brightest galaxies are ∼ 30kpc,
while dwarfs are much smaller. Galaxy angular momen-
tum is known poorly.

The % distribution of galaxies by type is as follows:

TABLE II. Distribution of Galaxies by Type

E and S0 Sa. Sb Sc Irr. Others

22.9 7.7 27.5 27.3 2.1 12.5

Properties of galaxies are closely related to the prop-
erties of their respective systems. In rich clusters, most
galaxies are type E or S0, explainable by the ram pres-
sure of the intracluster gas. In poor clusters, ellipticals
tend to populate inner regions; spirals and irregulars, the
other regions.

The velocity dispersion of stars in the main galaxies
of systems is equal to the main velocity dispersion of
the galaxies, indicating that systems of galaxies form to-

gether with galaxies, since a later adjustment of dynamics
takes too long.

The best studied clusters are regular clusters. For
example, the size of the Coma is about 4 Mpc, with
about an estimated several tens of thousands of galaxies.
The velocity dispersion along the line-of-sight is about
δV = 1000km/s, perhaps falling to half that value from
the center to the edge of the cluster. By means of the
viral theorem, one can estimate the cluster mass to be
the very large 3× 1015M⊙/[H/(75km/s/Mpc)]

By counting the galaxies, one can determine the in-
tegrated luminosity and then the ratio M / L. One es-
timate is 300[H/(75km/s/Mpc)], which is many times
larger that the M/L for ellipticals, the type with the
largest M/L. This signifies either (1) the cluster is nonsta-
tionary; (2) there is “invisible mass” between the visible
parts of galaxies; or (3) there are systematic errors in the
observations and their interpretations.

[The observations of Rubin et al. are neither mentioned
nor cited!]

15.12 Astrophysical Consequences of the Existence
of a Heavy Neutral Lepton


