National Synchrotron Light Source II

Remote and on-the-fly: artificial intelligence driven science in laboratories and central facilities.

Dr. Phil Maffettone 13 Sept 2021

Acknowledgements

University of Liverpool

Prof. Andy Cooper Peng Cui Dr. Marc Little Dr. Linjiang Chen Xiaobo Liu

Dr. Tao Liu

Yu Che

Dr. Vladimir Gusev

Dr. Benjamin Burger

NSLS-II @ BNL

- Dr. Daniel Olds
 - Clara Cook
- Dr. Thomas Caswell
 - Joshua Lynch
- Dr. Stuart Campbell
- Dr. Tatiana Konstantinova
 - Dr. Andi Barbour
 - Dr. Bruce Ravel

Rhur University

Lars Banko Dr. Yury Lysogorskiy Prof. Alfred Ludwig

Columbia University

Dr. Boyan Penkov Prof. Ken Shepard

Flatiron Institute

Dr. Aidan Daly

Artificial intelligence for beamline science

Federated AI, data streaming, and pragmatic engineering

- There is no one-size-fits-all Al/ML approach for any science.
- Federations of agents can solve different tasks asynchronously.
- Data streaming enables this.
- Collaboration drawing on domain knowledge and Al/ML expertise results in the most impactful projects.
- Scalable automation is the frontier for high-throughput and autonomous experiments.

Feature engineering can be incredibly effective, and requires collaboration with domain experts.

Supervised learning: Predicting labels for data when we have-or can create-labeled datasets.

'Good' Spectra

Energy

Identifying experimental failures at BMM.

Energy

Companion agents for classifying data streams: Applications in phase hunting, mapping, and transitions.

13 KU U K (14 V I

Maffettone, P.M. et al., Nat. Comp. Sci., 1, 290-297 (2021)

X-ray diffraction is an information poor measurement.

Maffettone, P.M. *et al., Nat. Comp. Sci.,* **1**, 290-297 (2021) 9

We can synthesize realistic XRD datasets, and use ensembles A to overcome the overconfidence of single neural nets.

Synthetic dataset

CNN ensemble training

Maffettone, P.M. *et al., Nat. Comp. Sci.,* **1**, 290-297 (2021) 10

Real data testing

0.75 Dog, 0.25 Cat

Ensemble voting

Classifying subtle phase transitions in BaTiO₃.

Classifying subtle phase transitions in BaTiO₃.


```
Maffettone, P.M. et al., Nat. Comp. Sci., 1, 290-297 (2021)
                            13
```


BROOKHAVEN

Searching for an eligive porous porous porous.

Maffettone, P.M. *et al., Nat. Comp. Sci.,* **1**, 290-297 (2021)

Searching for an elusive porous polymorph.

Office of Science

BROOKH/WEN

XCA aids phase mapping of

Maffettone, P.M. et al., Nat. Comp. Sci., **1**, 290-297 (2021)

[7

Unsupervised learning: How do we approach situations when we are exploring the unknown?

Uncertainty is a proxy for novelty.

ENERGY Office of Science

The latent space of variational auto encoders conditioned on the same synthetic dataset is a guide for novelty.

Non-negative matrix factorization (NMF) for decomposing datasets without priors.

X ~ WH W (m patterns, k components) H (k components, n features)

Appl. Phys. Rev. Accepted

We don't want the model that best fits the data, but the *most likely* model that best fits the data.

Canonical

FLATIRON INSTITUTE

BROOKHAVEN NATIONAL LABORATORY

ENERGY Office of Science

We don't want the model that best fits the data, but the *most likely* model that best fits the data.

Canonical

FLATIRON

BROOKHAVEN NATIONAL LABORATORY

ENERGY Office of Science

Constrained

Appl. Phys. Rev. Accepted

We don't want the model that best fits the data, but the *most likely* model that best fits the data.

Canonical

FLATIRON

BROOKHAVEN NATIONAL LABORATORY

ENERGY Office of Science

Constrained

Appl. Phys. Rev. Accepted

National Synchrotron Light Source II 🔳

24

Constrained NMF produces physically realistic components and weights.

Canonical

Appl. Phys. Rev. Accepted

Constrained NMF produces physically realistic components and weights.

Canonical

Constrained

Appl. Phys. Rev. Accepted

Canonical NMF leads to confusing results across a melting system.

Appl. Phys. Rev. Accepted

All patterns

27

Canonical NMF leads to confusing results across a melting system.

Appl. Phys. Rev. Accepted

28

Fast decomposition on-the-fly of a streaming dataset over a state variable.

Dynamically adjusted constraints leads to directly interpretable decompositions

Canonical

Constrained

Dynamically adjusted constraints leads to directly interpretable decompositions

Canonical

Constrained

Refinement Results

Making decisions on what to measure next: Active learning for exploring phase space Reinforcement learning for operating under resource constraints

Bayesian optimization to guide experiments.

Nature **583**, 237-241 (2020) 33

Autonomous discovery

Solid dispensing

Photolysis

Nature **583**, 237-241 (2020).

Liquid dispensing Inertization

Measurement

48 hours of research in 60 seconds

AUTONOMOUS CHEMISTRY LABORATORY

Nature 583, 237-241 (2020).

Samples tested = 192

LIVERSITY OF

Human defined experiments ran by robot researchers

Nature **583**, 237-241 (2020).

Models develop over time and balance exploration and exploitation Days Experiment 20.0 Controls 0.8 17.5 15.0 · Uncertainty Hydrogen evolution (µmol) 12.5 10.0 7.5 5.0 Sodium Silicate 2.5 4.0 0.0 L 3.0 4.5 5.0 3.5

Nature **583**, 237-241 (2020).

100

200

300

Experiments

500

400

600

2.0

1.5

Important components are automatically selected

Nature **583**, 237-241 (2020).

UNIVERSITY OF LIVERPOOL

Bayesian optimization for autonomous characterization is enabled by bluesky-adaptive.

- Exploration for optimizing understanding of a sample phase space.
- Exploitation for optimizing a response function in a sample phase space.
- Seamless integration of heuristics and scientist-in-theloop.

Probabilistic predictions from supervised models can also guide effective experimentation.

Reinforcement learning: For when model training is more costly than an experimental step.

With hundreds of samples to run remotely, how do we best utilize our resources?

Mach. Learn.: Sci. Technol. 2, 025025 (2021) 42

Reinforcement learning develops policies for optimal measurement strategies.

Mach. Learn.: Sci. Technol. **2**, 025025 (2021) 43

Reinforcement learning develops policies for optimal measurement strategies.

ROS-Laboratory

High level optimization

Interface: Simplified robot programming

ROSCon 2019, 1881 (2019) 45

Diverse laboratory tasks connected via message bus, with real time bus for robotics.

abb_driver

