Simulation and Reconstruction in the updated nHCal at eplC

Leszek Kosarzewski, Subhadip Pal

Czech Technical University in Prague
October 6, 2022

What we had

1. nHCal geometry updated with segmentation based on STAR EEMC and then extrapolated to $\eta=-3.5$
2. Segmentation implemented with PolarGridRPhi2:

- 60×6 deg bins in ϕ
- 12 bins in R
- η edges of tiles are taken from STAR and then used to get the R bins: $R=z / \sinh \eta ; \mathrm{z}=-330 \mathrm{~cm}$ (position of the nHCal$)$.
- $R_{\text {min }}=90.9878 \mathrm{~cm}, R_{\text {max }}=251.444 \mathrm{~cm}$.

Warning 1: Same tile size in R across the layers (changing z) instead of being same in η - still an approximation
Warning 2: Tiles shaped as parts of a ring instead of trapezoids

Extrapolation method for inner tiles up to $\eta=-3.5$

- Plotted $\Delta \eta$ (size of tile) vs. outer η edge of existing tiles
- Performed a linear fit :

$$
\Delta \eta=1.9936 e^{-5}-0.0522 \eta
$$

- Extrapolated up to $\eta=-3.5$
- Recalculated into limits in R using the formula:
$R=z / \sinh \eta$
Updates stored in negative-HCal-dev and a merge into the main branch has been approved.
https://github.com/eic/epic/tree/negative-HCal-dev

Description of events

- Neutrons are generated using the particle gun of ddsim
- Gun energy 5 GeV
- Generated particles are distributed uniformly within the range $130^{\circ}<\theta<177^{\circ}$
- 100000 events in total and 1 generated particle in each event

Position of the tiles

The position of the tiles looks good. The segmentations have worked as expected.

Position of the Hits

Hits are placed at the center of the tiles.

Reconstructed nHCal cluster position

Less no. of clusters along $y=0$ in the negative x region. It seems like the Clustering algorithm treats $\phi=-\pi$ and $\phi=\pi$ as separate positions.

nHCal cluster position

1. The number of clusters $(101,074)$ is more than the number of generated particles $(100,000)$. So, there are some split clusters.
2. As we go from outer R to inner R , the ΔR of the tiles keeps on decreasing. But the corresponding $\Delta \eta$ keeps
 on increasing.

- The η bin used in the clustering algorithm does not work properly for the inner regions.
- Suggestion to use different η bin for different regions of the detector.

nHCal cluster energy

nHCal cluster nHits

nHCal cluster Energy vs. nHits

Summary

- Updated nHCal segmentation and geometry - changes approved for merging into main branch
- Basic tests done - ready for simulation campaign

Further steps

- Tests needed for typical neutron energy - need input from $\mathrm{e}+\mathrm{p} / \mathrm{e}+\mathrm{A}$ events simulation
- Need to add charged track projections
- Apply machine learning methods to separate neutral/charged hadrons
- Implementation of more detailed geometry?
- Energy resolution studies?
- Any other checks?

Thank You

BACK UP

Reconstructed nHCal cluster x - y distribution: Neutron

 Gun

Reconstructed nHCal cluster eta-phi distribution : Neutron Gun

Reconstructed nHCal cluster intrinsic $\theta-\phi$ distribution : Neutron Gun

Leszek Kosarzewski, Subhadip Pal

Reconstructed nHCal cluster intrinsic $\theta-\phi$ distribution : Neutron Gun

Leszek Kosarzewski, Subhadip Pal

Reconstructed nHCal cluster r-z distribution : Neutron Gun

$\eta-\phi$ distribution of MC particles : Neutron Gun

Momentum distribution of MC particles : Neutron Gun

End point of the 1st generation daughter MC particles : Neutron Gun

End point of the 1st generation daughter MC particles : Neutron Gun

Number of 1st generation daughter MC particles : Neutron Gun

PDG Id of daughter MC particles vs. Generation No. : Neutron Gun

Solution

- Let's find out what pattern is followed by the outer η edges and the η widths.
- Plot a graph of η width vs. outer η edges and fit it.
- A linear fit works reasonably well.
- We get the η width of the tile with outer η edge $=-2$ and so on.
- We place the tiles accordingly up to $\eta=-3.5$, which now corresponds to $\mathrm{R}=19.9431 \mathrm{~cm}$.

Solution

Current bins in R are defined as follows:
[$19.9431 \mathrm{~cm}, 23.7336 \mathrm{~cm}, 28.0062 \mathrm{~cm}, 32.7836 \mathrm{~cm}, 38.0859 \mathrm{~cm}$, $43.9297 \mathrm{~cm}, 50.3297 \mathrm{~cm}, 57.2972 \mathrm{~cm}, 64.8401 \mathrm{~cm}, 72.966 \mathrm{~cm}, 81.6805$ $\mathrm{cm}, 90.9878 \mathrm{~cm}, 100.89 \mathrm{~cm}, 111.395 \mathrm{~cm}, 122.516 \mathrm{~cm}, 134.229 \mathrm{~cm}$, $146.58 \mathrm{~cm}, 159.546 \mathrm{~cm}, 173.155 \mathrm{~cm}, 187.424 \mathrm{~cm}, 202.377 \mathrm{~cm}, 218.019$ $\mathrm{cm}, 234.353 \mathrm{~cm}, 251.444 \mathrm{~cm}$]

