#### **Electron Polarimeter Locations**



## **RCS Compton Polarimeter**

RCS properties

- RCS accelerates electron bunches from 0.4 to full beam energy (5-18 GeV)
- Bunch frequency  $\rightarrow$  2 Hz
- Bunch charge  $\rightarrow$  up to 28 nA
- Ramping time = 100 ms



Polarimetry challenges

- Analyzing power often depends on beam energy
- Low average current
- Bunch lifetime is short

Compton polarimeter can also be used for measurement of polarization in RCS

- → Measurements will be averaged over several bunches can tag accelerating bunches to get information on bunches at fixed energy
- → Requires measurement in multiphoton mode (~1000 backscattered photons/crossing)



# **RCS Integration**



Location requirements:

- $\rightarrow$  Space upstream of one or more dipoles for laser
- $\rightarrow$  Long drift to photon detector with minimal beamline elements (would like to avoid drilling holes in magnets)
- $\rightarrow$  Space for photon detector
- → Vertical polarization in RCS can't use electron detector so no need for special location for it

## **RCS** Integration



 $\rightarrow$  Likely need some modification to quad, or relocation?

## **RCS** Integration



Assuming 10 cm wide photon detector, about 10 cm clearance between beam pip and edge of detector

Photon detector 27.8 m from end of 2<sup>nd</sup> dipole – similar drift as ESR Compton

## **RCS Integration To-do**

- Address possible clearance issue at QF2 → photon cone estimates, possible quad modification
- Get beam size, divergence at proposed laser IP  $\rightarrow$  verify that rates OK
- Determine location of photon exit window
- Further future
  - Detailed integration of laser system
  - Realistic photon detector system/stand in model