
pfRICH Tutorial

pfRICH Tutorial

This is an introductory tutorial for the EPIC pfRICH software. Given the significant implementation overlap
with the dRICH, many parts of this tutorial are applicable to both of these RICHes.

Some code relevant for the pfRICH is not yet merged. Until then, the combination of git branches we will
use for today's tutorial is:

drich-dev: pfrich-support

 epic: pfrich-tutorial

 EDM4eic: irt-data-model

 irt: main

 juggler: 73-add-rich-irt-algorithm

N.B.: we will be migrating away from juggler relatively soon, to EICrecon ; the reconstruction is
performed by irt , which is independent of reconstruction framework, but currently framework bindings
are only implemented in juggler .

The drich-dev repository contains detailed documentation how to run the EPIC software for the RICH
detectors. The following tutorial is meant to be a quick-start guide.

Setup and Building

First of all, be in an eic-shell container (see software tutorials, first session).

Clone EPIC repositories. Note that these commands also checkout the branches specific to today's
tutorial. If you are following this guide from a later date, these branches may no longer exist or have been
merged to main ; in that case, do not set --branch .

git clone git@github.com:eic/drich-dev.git --branch pfrich-support

cd drich-dev

git clone git@github.com:eic/epic.git --branch pfrich-tutorial

git clone git@github.com:eic/irt.git

git clone git@github.com:eic/EDM4eic.git --branch irt-data-model

git clone https://eicweb.phy.anl.gov/EIC/juggler.git --branch 73-add-rich-irt-

algorithm

https://github.com/eic/drich-dev
https://indico.bnl.gov/category/443/

These git URLs are for SSH; if you do not have SSH, use the HTTPS URLs instead.

See what combination of branches you have:

./check_branches.sh

Set environment:

source environ.sh

Some important environment vars:

 DRICH_DEV = path to drich-dev

 BUILD_NPROC = number of parallel threads for building (might not auto-

detect correctly for all machines)

 EIC_SHELL_PREFIX = primary installation directory for our builds

 DETECTOR_PATH = detector geometry installation (XML files)

Customize these environment variables as needed, in particular $EIC_SHELL_PREFIX .

Build, using one of the following options:

rebuild_all.sh # this will build everything, in order of dependence

build.sh REPO # this will only build the repository REPO

cmake # build it yourself, however you want

rebuild_all.sh clean # rebuild everything from a clean slate

N.B.: Assuming this is the first time you are building, run source environ.sh a second time so that your
detector build is used. Check that DETECTOR_PATH and any other environment variables involving the
detector are set correctly.

Finally, build the drich-dev local code:

make

Geometry

Relevant files:

compact files

epic/compact/pfrich.xml

epic/compact/drich.xml

epic/compact/definitions.xml # global constants (positions, envelopes,

etc.)

epic/compact/optical_materials.xml # material property tables

epic/compact/materials.xml # general materials

epic/templates/epic.xml.jinja2 # template for generating top-level

compact files, run by 'cmake';

 # these are used by simulation and

reconstruction;

geometry plugins

epic/src/PFRICH_geo.cpp

epic/src/DRICH_geo.cpp

One way to see the geometry is by jsroot :

run_dd_web_display.sh

run_dd_web_display.sh -p

run_dd_web_display.sh -d

run_dd_web_display.sh -e

Open resulting geo/detector_geometry.root in jsroot , either from the CERN hosted version or from
a self-hosted server.

Unfortunately, an event display is not supported on all machines (including the author's); this is a well
known issue.

If you want to see the beam pipe, enable it in epic/configurations/pfrich_only.yml (similarly for the
dRICH); these configuration files control the rendered XML files from the main jinja template.

Dump the constants:

npdet_info dump $DETECTOR_PATH/epic.xml # dump everything, and the

derivations

npdet_info dump $DETECTOR_PATH/epic.xml | grep -Ei '^pfrich'

Simulation

The primary tool for running DD4hep simulations is ddsim . Cherenkov physics requires a modified version
of this, called npsim ; this is found in the NPDet repository, and installed in eic-shell .

In drich-dev , we provide yet another wrapper: simulate.py :

https://root.cern/js/

simulate.py # usage guide

simulate.py -t1 -d-1 -s -n 50 # throw 50 pions at the pfRICH

simulate.py -t1 -d1 -s -n 50 # throw 50 pions at the dRICH

Several tests are available, you are welcome to add your own.

HEPMC input files are also supported: simulate.py -i [hepmc_file] .

Let's open the output file:

root out/sim.root --web=off

new TBrowser

events->Draw("PFRICHHits.position.y:PFRICHHits.position.x")

Draw the hits, or the segmentation, using drich-dev executables:

bin/draw_hits

bin/draw_segmentation

About the TTree format in the output file: this is a PODIO tree. Yes it can be used as a TTree , but PODIO
grants us much more power. See src/example_podio_reader.cpp for a demonstration how to read the
data using the generated classes from the data model. Run this example as:

bin/example_podio_reader

The hits for the dRICH and pfRICH are of type edm4hep::SimTrackerHit . The truth particles are of type
edm4hep::MCParticle . In some cases, we use the EIC-extended data model, in the edm4eic
namespace, such as edm4eic::CherenkovParticleID for the PID. For more information, see:

EDM4hep

EDM4eic

Within each, a YAML file defines the full data model; this YAML file is used to generate an implementation,
allowing for a language-independent specification. To see the generated C++ implementation:

ls /opt/software/linux*/gcc*/edm4hep*/include/edm4hep/

vim /opt/software/linux*/gcc*/edm4hep*/include/edm4hep/SimTrackerHit.h

ls $EIC_SHELL_PREFIX/include/edm4eic/

vim $EIC_SHELL_PREFIX/include/edm4eic/CherenkovParticleID.h

Reconstruction

https://github.com/key4hep/EDM4hep
https://github.com/eic/EDM4eic

Create the IRT aux file; this produces libIRT objects from the DD4hep geometry, using the
PFRICH_RECON_* and DRICH_RECON_* constants as a way to carry over the most important geometry
parameters. This conversion is handled by code in src/irtgeo , with the hope that this will be easily
portable to any framework. To make the aux file:

bin/create_irt_auxfile

Relevant code for reconstruction:

irt/{include,src} # the IRT code itself

juggler/JugPID/src/components/IRTAlgorithm* # binds IRT to Juggler and the

simulation data

juggler/JugPID/tests/options/*.py # configures IRTAlgorithm; also

has quantum efficiency tables

Run the reconstruction, using juggler :

recon.sh # for usage guide

recon.sh -p -j -t # dry run

recon.sh -p -j # real run

Check the output:

root out/rec.root --web=off

events-

>Draw("PFRICHPID_1.radiator:PFRICHPID_1.theta>>h(100,0,0.5,2,0,2)","","lego")

An example analysis

Run a momentum scan:

run simulate.py , using the momentum scan tests

run recon.sh , to run Juggler on the simulation output

draw the plots

the automation script is in ruby , requiring some extra depenencies:

scripts/install_ruby.sh # build a local copy of ruby

source environ.sh

bundle install # install gems (dependencies)

To run the momentum scan:

scripts/momentum_scan.rb

This script runs simulate.py followed by recon.sh , for a variety of particles and momenta.

See the output in the out/momentum_scan*/ directory, in particular:

ls out/momentum_scan.pfrich/_*.png

Contributing

We use standard Github workflow everywhere (see software tutorials, first session).

Join the EIC organization

Join the EPIC devs team

Open issues and pull requests

For the dRICH, we have:

Project page

Mattermost Channel

https://indico.bnl.gov/category/443/
https://github.com/eic
https://github.com/orgs/eic/teams/epic-devs
https://github.com/orgs/eic/projects/4/
https://eic.cloud.mattermost.com/main/channels/drich

