"KLM" Subdetector Concept for the EIC and Muon ID

W. W. Jacobs 2nd Detector W.G. / 14 Oct. 2022

Given Title: "Muon ID with a KLM like Detector" and Issues

Comments / prologue

- Idea originates from Belle/Belle II KLM (K_L and Muon) subdetector and its various upgrades.
- In this scheme, Muon ID capabilities (EIC priority) go hand-in-hand with good K_L / neutrals detection/ID => consider a combined optimization/discussion.

Belle Detector

- KLM (barrel and electron endcap) was incorporated into the EIC CORE proposal ... these efforts (and slides I will show) have wider application as we continue to develop ideas for detector #2.
- A "EIC KLM R&D Proposal" was submitted to the EIC Generic R&D program to address issues of further development of the KLM concept and optimization to EIC (funding TBD) ... will give/discuss objectives

KLM @ Belle II: a Useful Starting Point

The KLM subsystem is an important and successful part of the Belle II experiment; it presented a useful baseline/starting point for EIC application (EIC EOI #26, CORE)

Belle II and Prior Design Performance Requirements:

- \succ Detect K_L mesons and muons
- Identify the muons and K_L mesons with high efficiency and purity
 - for muons above ~ 0.6 GeV momenta
 - good angular resolution (~ 2 deg) for the K_L 's

KEK: e⁺e⁻ collider "Bfactory" (Y(4S)=10.58 GeV)

- Currently under Belle II development are optimization of muon efficiency/fake rates at lower momenta; K-long efficiency and ID improvements in HW and FW.
- Can a K_L momentum via TOF be effectively included in an (EOI) anticipated upgrade to all scintillator sensors with improved readout?

Belle II KLM det. and upgrades at Super KEKB

- Active "2D" readout elements interleaved with 1.5 T solenoid magnet return steel
- > Optimized for μ and K_L detection and ID
- Relatively inexpensive, technically simple construction, robust operation
- Not a full-fledged/proper EM or Hadron calorimeter (and generally not used as such)
- Upgrade planned for Barrel w/ scint. layers along with readout/FEE update
- Octagonal Iron yoke structures:
- 14 layers of ~ 47 mm thick steel plates
- ~ 40 mm thick air slots => 15 barrel, 14 Forward , 12 Back instrumented

	X ₀ (cm)	λ _ι (cm)
return steel	~ 37.5	~3.9
scintillator	~ 1.4	~0.7

KLM Backward Endcap (scint)

KLM Barre

(RPC

KLM Forward Endcap (scint)

Tracking

ECAL, iTOP, PID

Belle II

Endcap layers upgraded to scintillator at start of Belle II

Flashback March 2021: Idea of a KLM (K_L & Muon subdetector) at EIC

Electron-Muon Identification and Analysis Techniques at Belle II

BELLE2-NOTE-PL-2020-027.pdf

Other techniques for analyzing & combining subdetector data, have been developed for Belle II but not covered in 2020 BELLE2-NOTE

Particle ID: CDC, TOP, ARICH, ECL (CsI), KLM➤ Independently determine likelihood for

each charged particle hypothesis

construct a combined likelihood ratio.

$$\ell \text{ID} = \frac{\mathcal{L}_{\ell}}{\mathcal{L}_e + \mathcal{L}_{\mu} + \mathcal{L}_{\pi} + \mathcal{L}_K + \mathcal{L}_p}$$

- reconstruct charged tracking (SVD + CDC)
- select suitable candidates -> extrapolate tracks to outer det.
- match to KLM "track" hit pattern
- Characterize range and track fit (layer turn on, etc.) => muon likelihood parameters
- optimization analysis (digital/logic)

A. Abashian *et al,* NIM **A491,** 69 (2002)

Lower momentum μ w/ tracking + ECL (Wave Form) info and BDT analysis (Bryan Fulsom, EIC Muon Detection and Quarkonium Reconstruction Workshop, 2022).

Eta Dependence of Muon Momenta for Different Channels at the EIC

Muons from J/ψ decay

- Barrel: clean muon identification would be good to have below 1 GeV/c (especially near η=0) and up to ~ 4 GeV/c
- Endcaps: clean muon ID desirable over the range of 1 – 10 GeV/c

Simulations from arXiv2209.00494 (CORE)

- **>** Moderately strong η vs. p dependence
- Lowest momentum Muons in Barrel region around η = 0
- > Momenta from J/ ψ less than those from Y decay

Muons from Y decay

- Barrel: clean muon
 identification from 1.5
 - 10 GeV/c is needed
- Endcaps: clean muon identification needed
- from 3 20 GeV/c
- in both cases, while muons complement the electron decay channels, they can be more rebust

EIC (CORE) "KLM" Implementation with Symmetric Solenoid Model

N.B.: maximum scintillator readout strip length < ~ 3m in all layers

KLM: Muon Threshold, ID and Purity Issues vs. Detector η

Thresholds (and perhaps purity) will vary across Barrel vs. Endcap regions => physics impact?

KLM Endcap::

- 12 active layers (current)
- Material burden: electon-side inner dets (significantly varying with location)

KLM Barrel:

- 14 active layers (current)
- Material burden: inner dets + coils/cryostat

Inner Detector components

- Tracking: --
- DIRC: --
- PbWO₄: modules 20 cm, density 8.3
- W-shashlik: (modules 10 cm, density 17.2?)

Initial Coil and cryostat estimates

- Inner vacuum vessel ~ 4 cm Al, density 2.5
- Inner radiation shield ~ 2 mm Cu, density 9
- Coil 6 cm a 5:1 mix of Cu and NbTi (i.e., with Nb =Ti, a 10:1:1 mix of Cu, Nb, and Ti)
- Coil support cylinder ~ 7 cm Al, density 2.5
- Outer radiation shield ~ 2 mm Cu, density
- Outer vacuum vessel Al ~ 10 cm Al, density 2.5

 Less material burden may lower Muon KLM detection threshold, but may also attenuate less background and fake contributions?
 "curl up" threshold depends on field and KLM radial compactness

Plans (EOI to Belle II): replace 13 remaining Barrel RPC layers

- Move digitizing front end electronics into detector panel
- Developments: embedded ASIC; compact SCROD; 64-chn readout; several different preamp options
- \succ K_L time-of-flight possible?

Expected installation ~ 2027-8

 \geq ~ 26k channels: working on updating all readout electronics to state-of-art implementation

➢ Fabricate the new scintillator layers

► Redesign scintillator readout for all 15 layers

2x CAT-7

Minimize cables, board size

Recall KLM performance: K-long detection and kinematics

Belle II analyses and algo/FW implementation for K-long continue to be in progress; proposal (CORE) expectations (& plots below) were based on results from Belle Data:

- Efficiency: fraction of reconstructed K-long clusters vs. K-long momentum in kinematically constrained decays ... angular resolution from known K-long direction vs. measurement
- Current Belle II efforts include: using a trained BDT to distinguish K_L meson from background; future use of FEE based signal shape characterization possible?
- As is the case for Muons, neutral/K_L response in an EIC KLM implementation could be studied and optimized in a suitable simulation environment.

Generic R&D Proposal for "KLM" Subdetector at the EIC (esp. 2nd Det)

EICGEBRandD 2022 ID 19

EIC KLM R&D Proposal

M. Arratia^a,¹ J.C. Bernauer,² M. H. S. Bukhari,³ R. Corliss,² J. Datta,²
K. Dehmelt,² A. Deshpande,² P. Garg,² T. Ghosh,⁴ Th. Hemmick,²
Y. Ilieva,⁵ W. W. Jacobs^b,⁶ J. Klay,⁷ P. Nadel-Turonski,² W. Li,²
E. Shulga,² O. Tsai,⁸ G. S. Varner,⁹ G. Visser,⁶ and A. Vossen^{c10,11}

¹Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA ²CFNS, Stony Brook University, Stony Brook, New York 11794 ³Department of Physics, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia ⁴Ramaiah University of Applied Sciences, New BEL Road, Bangalore-560054, India ⁵University of South Carolina, Columbia South Carolina 29208 ⁶CEEM, Indiana University, Bloomington Indiana 47405 ⁷California Polytechnic State University, San Luis Obispo, 93407 ⁸Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA ⁹University of Hawaii, Honolulu, Hawaii 96822 ¹⁰Duke University, Durham, North Carolina, 27708 ¹¹Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (Dated: June 2022)

This R&D program aims to demonstrate the capability of the KLM detector concept to provide muon identification in a compact design, to extend its capability for hadron identification and calorimetry beyond the state-of-the-art (Belle II), and to investigate the KLM principle in a dedicated HCAL using existing components. The goal is to provide a cost-effective generic baseline detector design for muon and/or neutral hadron (K_L and neutron) identification based on successive layers of scintillator-absorber sandwich integrated in the central solenoid flux return that can be implemented, *e.g.*, in a second EIC detector or future extensions elsewhere. The program brings a new collaborating institution, Ramaiah University of Applied Sciences (Bangalore, India), to the EIC project and explores synergies between the participating institutions as well as with other R&D programs at EIC and elsewhere.

Proposal contact(s): A. Vossen; anselm.vossen@duke.edu

 $^{\rm a}$ Principal Investigator; miguel.arratia@ucr.edu

^b Principal Investigator; jacobsw@indiana.edu
^c Principal Investigator; anselm.vossen@duke.edu

Objectives of Proposed R&D Program

- Demonstrate capability of the <u>KLM detector concept for the EIC</u> and provide cost-effective generic baseline detector design guide.
 - Provide excellent muon identification in a compact design (based on successive layers of scintillator-strip-absorber).
 - Study optimization of field, det radius and layer topology for best muon efficiency vs. threshold and desired range.
- > For muon and neutral hadron (KL and neutron) identification:
 - Extend concept for hadron identification and calorimetry beyond the state-of-the-art (Belle II).
 - Use pulse-shape analysis based on recent advances in SiPMs and "Oscilloscope on a chip" readouts.
 - Use timing resolution (strive for 10's of picosec's) for time-off flight info for hadron ID and momentum measurement (w/ double-sided readout, could enable a more compact design).
- Will a <u>KLM double as a cost effective HCAL</u>, also invertigate a dedicated HCAL using KLM (longitudinal & transverse readout) principles .
- Can pulse shape, timing and longitudinal plus horizontal segmentation, be exploited AI in reconstruction for muons & hadron ID and calorimetery?

Summary and Future Directions

- Adding clean muon detection to any EIC detector has been identified as high interest by the community; it can extend the physics reach of the EIC.
- The KLM detector concept, based on readout layers of a scintillator-strip-absorber sandwich in the solenoid return steel, can provide clean muon identification in a cost effective and compact design.
- A KLM also includes neutral hadron (K_L and neutron) identification , whose capabilities can be optimized in conjunction with muon detection/ID.
- Separately, a KLM may double as a cost effective "thin" HCAL, or drive a dedicated HCAL using KLM principles (longitudinal and transverse readout granularity).
- Investigations of muon detection and hadron/neutrals ID/calorimetry capabilities, beyond the state-of-the-art (Belle II), and matched to the needs of EIC physics are needed to provide a cost-effective generic baseline detector design guide.

Thanks !

BACKUP SLIDES

KLM Subdetector Implementation at CORE (as in DPAP proposal)

Endcap (electron side) nominal strip count:

- > 12 readout layers
- > 84 strips in each orthogonal plane per layer per octant
- Iengths "x " and "y" up to 2.4m
- \succ Endcap total of ~ 8.1k strips.

- Instrument return steel of entire barrel and electron-side endcap
- Different than Belle geometry (more elongated/compact barrel; small-radius endcap encircling beam pipe)
- Shrink radial extent of the readout gaps from Belle for overall compactness
- Select insertion/readout gap of 21.5 mm interleaved w/ 55.5 mm steel plates (\sim 72% steel in the return)

Barrel (electron & ion sides) nominal strip count:

- ➤ 14 readout layers
- \blacktriangleright " ϕ " strips 36-64 (lengths 1.5-3m) per octant
- 48-98 "z" strips (lengths 1.2-2m) per octant
- \blacktriangleright full barrel total of \sim 30k strips

Belle design parameters adapted to CORE, chosen for "buildabilty" and not otherwise optimzed in proposal