ENDF/B-VIII-beta Data Testing at **ORNL**

Mark Williams Doro Wiarda B. J. Marshall

Oak Ridge National Laboratory

2016 CSEWG Meeting

Brookhaven National Laboratory

November 14-16, 2016

ORNL is managed by UT-Battelle for the US Department of Energy

Summary of Methods

- AMPX processing system was used to process continuous energy (CE) and multigroup (MG) libraries from ENDF/B-VIII beta2 and beta3 files
- Critical benchmark calculations were performed with CE-KENO from SCALE-6.2.1
- Benchmark cases taken from ORNL's Valid Suite of inputs for selected criticals in ICSBEP Handbook
 - 52 HEU solutions, thermal (HST)
 - 19 LEU solutions, thermal (LST)
 - 81 Pu solutions, thermal (PST)
 - 72 LEU lattices, thermal (LCT)
 - 49 Mixed U-Pu, thermal lattices (MCT)
 - 11 IEU metal, fast (IMF)
 - 23 HEU metal, fast (HMF)
 - 10 Pu metal, fast (PMF)

Results for Thermal HEU Solutions

Results for Thermal LEU Solutions

Results for Thermal Pu Solutions

Results for Thermal LEU Lattices

Results for Thermal U-Pu Lattices

Results for Fast HEU Metal Systems

Results for Fast Pu Metal Systems

Results for Fast IEU Systems

Average over all experiments for benchmark type

% of Results Within Experimental Std. Dev.

SUMMARY of CHANGES FROM VII.1 to VIII-beta

- Slight improvement for HST
 - $-k_{eff}$ is typically low by 200-500 pcm; 70% of cases are in exp. uncertainty
- Slight improvement for LEU lattices,
 - Nearly 80% of beta3 C/E's within experiment uncertainty
- Little change for HMF cases
 - Several cases remain ~500 pcm high
- VIII-beta Pu data is less reactive VII.1
 - Reduces high k_{eff} for some PST criticals; but makes others too low
 - k_{eff} for U-Pu thermal lattices are lower and worse
 - Average PMF k_{eff} reduced slightly; agreement within +/- 250 pcm of experiment
- IMF cases are improved; beta3 is better than beta2

Trending of HMF-025 Criticals

OAK R

National Laboratory

14 Presentation_name

Description of HMF-025 Benchmark Series

- 5 experiments performed in 2007 at FKBN-2 critical facility at Russian Federal Center Institute of Physics
- HEU disks (20 cm OD;1 cm thick) stacked to form two cylindrical core regions
- Vanadium reflectors on top and bottom with thicknesses varied from 1-20 cm
- Criticality achieved by raising lower fuel region
- ICSBEP integral experiment uncertainty ~160 pcm

C/E values versus V Reflector Thickness for HMF-025

CASE	Reflector Thickness (cm)	C/E
HMF-025-001	1.0	0.99903
HMF-025-002	2.0	1.00115
HMF-025-003	4.0	1.00368
HMF-025-004	10.0	1.00548
HMF-025-005	20.0	1.00566

Integrated Sensitivities for HMF-25-001 and 25-005

• keff sensitivity to data:

Delta-keff sensitivity to data:

$$S_{\alpha}^{(k)} = \frac{\alpha \partial k}{k \partial \alpha} \longrightarrow \frac{k_2}{\Delta k} S_{\alpha}^{(k_2)} - \frac{k_1}{\Delta k} S_{\alpha}^{(k_1)}$$

	rank	nk HMF-025-001 keff		HMF-025-005 keff		delta k	
	1	U235 nubar	0.986	U235 nubar	0.986	V total	4.74
	2	U235 total	0.770	U235 total	0.734	V (n,n)	3.83
	3	U235 (n <i>,</i> f)	0.648	U235 (n,f)	0.631	U235 total	-3.26
	4	U235 (n,n)	0.087	V total	0.099	U235 (n,f)	-1.86
	5	U235 (n,n')	0.073	V (n,n)	0.081	V (n,n')	0.953
	6	U235 (n,g)	-0.041	U235 (n,n)	0.077	U235 nubar	-0.95
17 Mar for t	7	V total	0.035	U235 (n,n')	0.071	U235 (n,n')	-0.84

Energy-Dependent Sensitivities for U235 Fission

Vanadium Total Cross Section Sensitivities

