

### CIELO Data Validation and Benchmarking Activities at the IAEA

A. Trkov, R. Capote International Atomic Energy Agency Vienna, Austria

### Acknowledgement



 The work presented herein is the result of contributions from several IAEA consultants and voluntary contributions from external collaborators...



#### **Overview**

- Scope of data testing at the IAEA with examples
- Pitfalls in the use of figures of merit (FoM)
- Discrepancies in integral benchmarks
- Uncertainties due to data processing and self-shielding treatment

# Scope of data testing



Strategy – taking <sup>235</sup>U as an example:

- Start with clean bare configurations
- Proceed with thermal solutions
- Include well-tested reflected systems
- More complex assemblies and broad scope testing

# Bare <sup>235</sup>U configurations



Observations:

Large discrepancies in predicted reactivity, which is unreasonable since sensitivities to nuclear data are similar. Examples:

- Caliban: 1% over-prediction (MCNP and TRIPOLI), 0.5% inconsistency in mass of fissile material, neglecting measured abundances of B, etc.)
- ORNL spheres predicted high compared to cylinders
- Discrepancies in the Russian benchmarks (0.5%)...

→ There is a need to resolve the discrepancies

### **Bare <sup>235</sup>U configurations**





# **HEU Thermal Solutions**



- Traditionally, the "above-thermal leakage fraction" (ATLF) is an established parameter for characterising solution assemblies
- To save time, representative cases were chosen that span the wide range of values
- With "beta-2" good performance is preserved Again, there is large scatter in some groups of benchmarks

### **HEU Thermal Solutions**





### **Reflected assemblies**



- Preference for simple configurations with few materials that have well-known cross sections
- A selection of traditionally used assemblies was collected into the so-called "main" list

# **Reflected and other assemblies (main)**



### List of "main" benchmarks



| 1  | HEU-MET-FAST-001  |
|----|-------------------|
| 2  | HEU-MET-FAST-028  |
| 3  | IEU-MET-FAST-007  |
| 4  | PU-MET-FAST-001   |
| 5  | PU-MET-FAST-002   |
| 6  | PU-MET-FAST-006   |
| 7  | U233-MET-FAST-001 |
| 8  | U233-MET-FAST-006 |
| 9  | PU-MET-FAST-022   |
| 10 | PU-MET-FAST-029   |
| 11 | IEU-MET-FAST-001  |
| 12 | IEU-MET-FAST-001  |
| 13 | IEU-MET-FAST-001  |
| 14 | IEU-MET-FAST-001  |

hmf001 hmf028 imf007d pmf001 pmf002 pmf006 umf001 umf006 pmf022 pmf029 imf001-001 imf001-002 imf001-003 imf001-004

Godiva Flattop-25 Big Ten(detailed) Jezebel Jezebel-240 Flattop-Pu Jezebel-U233 Flattop-23 Bare (98 Bare (88 Jemima-1 Jemima-2 Jemima-3 Jemima-4

### **Broad scope testing**



Benchmarking depends on:

- Availability of input models
- Computer resources
- Capacity to analyse the results
- Different sets are used at various places (NRG, LANL, CEA...)

Example:

– Los Alamos suite of 119 ICSBEP benchmarks

### **Broad scope testing**





# Broad scope testing (2σ outliers e80b2)



# Pitfalls in the use of FoM



- Different possibilities for defining Figures of Merit (FoM) exist:
  - r.m.s. Delta-k equal weight to all, including cases of low accuracy
  - X<sup>2</sup>/DoF sensitive to cases with unrealistically small uncertainties
  - ... other

#### Cumulative contribution to X<sup>2</sup>/DoF





# Discrepancies in integral benchmarks



- As illustrated in the case of bare <sup>235</sup>U assemblies, discrepancies of several hundred pcm (parts per 100 000) for cases with similar spectra and sensitivity profiles are more likely caused by bad description or bad benchmark models
- A strong effort is needed to resolve such discrepancies

### **Data processing and methods**



- Monte Carlo codes can treat geometry accurately
- Starting from the same data source they should give the same result
- Differences occur due to:
  - Data processing (e.g. resonance reconstruction)
  - Methods (e.g. self-shielding in the unresolved resonance range (URR))
  - Other ...

### **Resonance reconstruction**



Example:

- Make an ACE file with NJOY
- Convert back to ENDF
- Process the same library with PrePro with 0.1% reconstruction tolerance and same temperature
- Compare the two files
- Study the impact of differences on benchmarks
  - E.g. NJOY, PrePro, GRUCON (preliminary, ACE files provided by V. Sinitsa)

### <sup>238</sup>U Resonance reconstruction <sup>60</sup> 60 Years



#### <sup>239</sup>Pu Unresolved resonance range





### <sup>238</sup>U Fission Cross Section





### <sup>238</sup>U Fission Cross Section





# Impact on selected ICSBEP benchmarks



# Self-shielding in the URR - importance





# Self-shielding in the URR - methods



- NJOY probability table method (PTM)
- PrePro multi-band parameters
- GRUCON average parameters (preliminary, ACE files provided by V. Sinitsa)

Analysis is limited to <sup>235</sup>U and <sup>238</sup>U, the rest is taken from the generic MCNP library)

# Self-shielding in the URR - methods





### Conclusions



- Discrepancies in integral benchmarks with similar spectra and sensitivities should be resolved
- One should be careful in the interpretation of FoM
- MC calculations are NOT exact be aware of uncertainties due to data processing and due to methods

# **Conclusions (cont.)**



- With current data libraries we are converging for well-defined benchmarks; tight convergence criteria are needed
- Detailed benchmark models should be used whenever possible to avoid ambiguities

# List of benchmarks in the study of methods



| 1 HEU-MET-FAST-001   | hmf001    | Godiva            |
|----------------------|-----------|-------------------|
| 2 HEU-MET-FAST-002   | hmf002-2  | Topsy-2           |
| 3 HEU-MET-FAST-003   | hmf003-01 | Topsy-U_2.0in     |
| 4 HEU-MET-FAST-003   | hmf003-02 | Topsy-U_3.0in     |
| 5 HEU-MET-FAST-003   | hmf003-03 | Topsy-U_4.0in     |
| 6 HEU-MET-FAST-003   | hmf003-10 | Topsy-W_4.5in     |
| 7 HEU-MET-FAST-003   | hmf003-11 | Topsy-W_6.5in     |
| 8 HEU-MET-FAST-014   | hmf014    | VNIIEF-CTF-DU     |
| 9 HEU-MET-FAST-032   | hmf032-1  | COMET-TU1_3.93in  |
| 10 HEU-MET-FAST-032  | hmf032-2  | COMET-TU1_3.52in  |
| 11 HEU-MET-FAST-032  | hmf032-3  | COMET-TU1_1.742in |
| 12 HEU-MET-FAST-032  | hmf032-4  | COMET-TU1-0.683in |
| 13 IEU-COMP-FAST-004 | icf004    | ZPR-3/12          |
| 14 IEU-MET-FAST-007  | imf007    | Big_Ten           |
| 15 IEU-MET-FAST-007  | imf007d   | Big_Ten(detailed) |
| 16 IEU-MET-FAST-010  | imf010    | ZPR-6/9(U9)       |
| 17 IEU-MET-FAST-012  | imf012    | ZPR-3/41          |
| 18 IEU-MET-FAST-013  | imf013    | ZPR-9/1           |
| 19 IEU-MET-FAST-014  | imf014-2  | ZPR-9/2           |
| 20 IEU-MET-FAST-022  | imf022-01 | FR0_3X-S          |
| 21 IEU-MET-FAST-022  | imf022-02 | FR0_5-S           |
| 22 IEU-MET-FAST-022  | imf022-03 | FR0_6A-S          |
| 23 IEU-MET-FAST-022  | imf022-04 | FR0_7-S           |
| 24 IEU-MET-FAST-022  | imf022-05 | FR0_8-S           |
| 25 IEU-MET-FAST-022  | imf022-06 | FR0_9-S           |
| 26 IEU-MET-FAST-022  | imf022-07 | FR0_10-S          |
| 27 MIX-MISC-FAST-001 | mif001-01 | BFS-35-1          |
| 28 MIX-MISC-FAST-001 | mif001-02 | BFS-35-2          |
| 29 MIX-MISC-FAST-001 | mif001-03 | BFS-35-3          |
| 30 MIX-MISC-FAST-001 | mif001-09 | BFS-31-4          |
| 31 MIX-MISC-FAST-001 | mif001-10 | BFS-31-5          |
| 32 MIX-MISC-FAST-001 | mif001-11 | BFS-42            |