The Progress on LANSCE Experimental Activity

Hye Young Lee
Physics Division

Outline

• Neutron-capture study: DANCE Status and Upgrade of NUANCE
 • 236U(n,γ) results
 • 63Cu(n,γ) results
 • 239Pu(n,γ) results

• Photon Strength Function Study for unstable nuclei: Apollo at ANL
 • 96Zr(d,pγ) updates
 • 57Fe(d,pγ) updates

• NZ study: LENZ status
 • 16O(n,α) updates
 • 95Mo(n,p) 52Cr(n,α) reactions
 • 60,61,62Ni(n,p) reaction
NEUANCE – NEUtron detector Array at daNCE

- High detection efficiency and energy sensitivity
- Fast time response
- Quality of Pulse Shape Discrimination
- Compact size that can fit inside the DANCE calorimeter
Pulse Shape Discrimination and Time of Flight measurement using Stilbene crystal

- Threshold is about 40 keVee, with a dynamic range of up to 2 MeVee
- Total efficiency of detecting neutrons is estimated to be 28-40 % per 252Cf fission
Dance : $^{236}\text{U}(n,\gamma)$ result led by B. Baramsai

$^{236}\text{U}(n,\gamma)$ targets with each mass of 64 μg and 30 mg, so ^{235}U cross section was used as a reference.

Systematic uncertainties (1-100 keV)

<table>
<thead>
<tr>
<th>Uncertainty Source</th>
<th>dX / X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td><0.1-3 %</td>
</tr>
<tr>
<td>Background Subtraction</td>
<td>~1.7 %</td>
</tr>
<tr>
<td>Experimental Corrections</td>
<td>~2.2 %</td>
</tr>
<tr>
<td>Width fluctuation</td>
<td>1.7%</td>
</tr>
<tr>
<td>Reference CS (^{235}U)</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>4-8%</td>
</tr>
</tbody>
</table>
Copper isotopes are important for weak s-process nucleosynthesis, in particular neutron capture on ^{63}Cu produces the unstable ^{64}Cu. β^+ decayed ^{64}Ni shields ^{64}Zn from the contributions of the r-process.
The $^{63}\text{Cu}(n,\gamma)$ cross section measured via 25 keV activation and time-of-flight

M. Weigand,1,* C. Beinrucker,1 A. Couture,2 S. Fiebiger,1 M. M. Fonseca,3 K. Göbel,1 M. Heftrich,1 T. Heftrich,1 M. Jandel,2 F. Käppeler,4 A. Krása,5 C. Lederer,6,1 H. Y. Lee,2 R. Plag,1 A. Plompen,5 R. Reifarth,1 S. Schmidt,1 K. Sonnabend,1 and J. L. Ullmann2

1Goethe University Frankfurt, Germany
2Los Alamos National Laboratory, New Mexico, USA
3Instituto de Física Nuclear da Universidade de Lisboa, Portugal
4Karlsruhe Institute of Technology, Germany
5EC-JRC-IRMM, Geel, Belgium
6University of Edinburgh, United Kingdom

(Dated: September 16, 2016)

Submitted to PRC (2016)
Dance: 239Pu(n,γ) cross section led by S. Mosby

- DANCE Uncertainty is dominated by systematic uncertainty
- Thick target measurement with a beam time less than 14 days
- No fission tagging, so only γ-ray multiplicity = 7&8 was used for identifying fissions

Thin 239Pu target DANCE measurement by S. Mosby et al. PRC 89, 034610 (2014)
How to improve 239Pu(n,γ) measurement

• Use a less contaminated 239Pu target
• Optimized closed packed geometry at DANCE will improve photo-peak efficiency by more than 10%
• Optimize moderator design inside DANCE ball will increase NEUANCE efficiency to play as more efficient and active fission veto detector
• Overall systematic uncertainty will be improved by a factor of 2-4

• Background contribution of DANCE 239Pu measurement at Lujan is sensitive to timing resolution
• Fission induced BG is the largest, so subtracting BG vs. vetoing BG out will impact final signal to noise ratio tremendously
This is a benchmark study of understanding the photon strength functions on rare-isotopes by comparing to a direct neutron capture measurements.
• 2d plot of the gamma-ray cascade vs. the excitation energy in ^{58}Fe
• Complementary to DANCE measurements, since this allows to measure γ-ray decays below the neutron separation energy of 10.04 MeV
16O(n,α) measurement updates

Detected particle energy vs. neutron Time-of-Flight

Reaction Q-value vs. detected LAB angles

Kinematic curve of 16O(n,α) reaction

Cross section is being deduced from the experimental yields by applying corrections and normalizations for the amount 16O and a beam flux
16O(n,α) data: Forward Propagation Analysis

With well characterized experimental response functions and systematically varying input cross sections, we plan to analyze data “inclusively” by fitting yields in Monte Carlo framework.

Measured detector resolution & efficiency

“Measured” target profile

Estimated beam resolution

Calculated R-matrix cross section

Predicted from LANL R-matrix analysis by J. Hale
Forward Propagation Analysis requires to validate MC simul. in order to achieve the reduced systematic unc.

Hit patterns in DSSD for Th-229 is compared between LENZ GEANT simulation and measurement.

LENZ data
LENZ : Scheduled experiment in 2016

• Reaction model study including level density, strength functions, etc. through (n,p) and (n,α) measurements at LANSCE, in particular to up to 20 MeV neutron energy

• Plots show the Hauser-Feshbach calculations on Mo isotopes (LEFT) and the lack of experimental data on $^{52}\text{Cr}(n,\alpha)$ in comparison to evaluations (RIGHT)
Development of direct \((n,z)\) measurement on radioactive nuclei produced at Isotope Production Facility (IPF)

IPF at LANL can provide a radioactive target to be used at LANSCE for measuring \((n,z)\) reactions directly. For the interest of heavy ion production via \(\nu p\) process in explosive environment, we are developing a \(^{56}\text{Ni}\) target to study \((n,p)\) cross section

Benchmark measurements on stable \(^{60,61,62}\text{Ni}(n,p)\) reactions are scheduled in Dec. to guide the radioactive production and study beam induced backgrounds
Summary

- DANCE and LENZ at LANSCE and Hellos+Apollo at ANL can provide high quality data for neutron capture and neutron-induced charged particle reactions, in particular expanding our reactions studies to radioactive nuclei directly.

Collaborators:
- C-NR: B. Baramsai, T.A. Bredeweg, M. Jandel (left LANL), G. Rusev, C.L. Walker