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Introduction
Motivation

• For nuclear critcality applications and many others, the existing evaluated
data perform well in transport simulations partly owing to compensating
errors in the nuclear data libraries

• CIELO collaboration provides a framework for nuclear data evaluation aimed
to establish the highest fidelity general purpose nuclear database

• 235U among 1H,16O,56Fe,238U, 239Pu is one of the highest priority isotopes

Background

• Current status of 235U evaluation in ENDF/B-VII.1 library (2011)

- Resonance parameters are the same as ENDF/B-VI.8 release (ORNL/TM-13516)1

- Description of the 235U resonance evaluation can be found in NEA/WPEC-18

• 235U ORNL resonance evaluation(=CIELOb18=o23) is part of the ENDF/B-
VIII.0β2 and β3 releases (2016)

1See also L. C. Leal, H. Derrien, N. M. Larson, R. Q. Wright, Nucl. Sci. Eng., 131 230 (1999).
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Nuclear Data ORNL Evaluation Overview

No. Nucleus (Iπ ) Emax Method J3− J4−

1 235U (7/2−) 2.25 keV Reich-Moore 1433 1731

• The current ORNL resonance evaluation o23 (ORNLv23) is an intermediate step of the
evaluation process within CIELO

• The current o23 resonance evaluation started from a set of resonance parameters (o17)

- o17 was documented in the ORNL presentation at the mini-CSEWG meeting (LANL,
April 2016) and released in May 2016 as part of the ENDF/VIII.0β1 release.

• Particular emphasis in producing o23 was devoted to

- Sub-thermal and thermal : Thermal Constants (Pronyaev, micro. data)

- Fission integrals (7.8-11 eV)

- Neutron incident energies up to 20 eV for measurements of α = σγ/σ f (or η)
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Nuclear Data ORNL Evaluation Overview
• The current ORNL resonance evaluation o23 is generated by the SAMMY code using

the Reich-Moore approximation

- All SAMMY inputs included in the current evaluation procedure are written using the
most recent key-word for particle-pair definitions.

- Isotopic impurities included
- Parameters for the resolution functions (crunch data, γ-peak) of transmission exper-

imental data (J. A. Harvey) retrieved from ORELA logbook (special thanks to K. Gu-
ber).

• Residuals and chi-squared of all experimental data
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SAMMY Algorithm
The various reaction cross sections σcc′ for an incoming channel
c and outgoing channel c′ can be written in terms of the matrix

Xcc′ =
√

PcL−1
c ∑

c′′
[(L−1−R)−1]cc′′Rc′′c′

√
Pc′δJJ′ , (1)

where, in the eliminated-channel approximation, the matrix R (or
R-matrix) for the channel spin group defined by the total spin Jπ

is
Rcc′ =

[ n

∑
λ=1

γλcγλc′

Eλ −E − ıΓ̄λγ/2
+Rext

c δcc′

]
δJJ′ (2)

SAMMY derives from the best fit of experimental data the reduced-
width amplitude γλc related to the channel width using

Γλc = 2γ2
λcPc(E) , (3)

where the penetrability factors depend on the Coulomb functions
Fℓ, Gℓ as Pc(E) = ka/[F2

ℓ (ka,η)+G2
ℓ(ka,η)].
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Differential and Integral Data
Differential data

• Application of the R-matrix SAMMY method
(Reich-Moore) to determine a consistent set of
neutron resonance parameters (RP) based on
the fit of available experimental data (transmis-
sion, capture, angular distribution, . . . )

• Statistical properties of RP such as average
spacing ⟨Dℓ⟩ and strength function Sℓ
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Integral data

• Resonance parameter and covariance are con-
verted into the ENDF/B format - file 2 (parame-
ter) and 32 (covariance matrix)

• Process ENDF/B file with processing codes as
NJOY or AMPX in order to generate cross sec-
tion in point-wise and/or group representation

• Test evaluations against integral benchmarks
(e.g. reaction rate) sensitive to a specific energy
range (RRR)

R =
∫

RRR

σ(E)ϕ(E)dE (4)
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Thermal Cross Sections and Integrals

• o23 values for fission and capture thermal cross sections are based on
235U(n,f) thermal constants obtained on the basis of microscopic data (i.e.,
only considering Wallner thermal capture measurements)

• Fission integral (I4=247.0 b·eV in the Figure below) between 7.8 and 11
eV based on recommendation of Neutron Standards (246.4 b·eV)
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0.1694 0.1690 0.1689 αb

a
T=0 K

b
Calculated from σf and σγ

8 M.T. Pigni



Results
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• n+235U η measurements of Brooks, Wartena, and Weigmann (left) and Gwin’s fission measured cross
sections (right) compared to ENDF/B-VII.1 and ENDF/B-VIII.0β2 values.

• the CIELO η (decreased) values are, on average, in better agreement with the experimental data

- achieved by increasing the capture cross sections, mostly in the valley of the resonances while keeping their peak values
unchanged. The resonance at En=2 eV is clearly an example.

• The sensitivity of the resonance parameters to fission cross sections seems to be more relevant than to
capture cross sections at neutron energies ? 4 eV (see fission cross sections shown in blue continuous
line).
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Other Results
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Neutron multiplicities ν̄(E)2

• In the observed ν̄(E) there are clear fluctuations roughly correlated with the energy of
compound nucleus resonances, but also partially explained by the influence of the (n,γf)
process, where a γ is emitted prior to the fission event
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Figure 1: ν̄(E) relative to ν̄(Eth) calculated at thermal energy (0.0253 eV) for n+235U reactions. Several experimental data sets are
compared to three evaluated data.
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ATLF benchmark simulations3

• Results of the suite of integral benchmarks for thermal solutions of highly enriched ura-
nium (HEU-SOL-THERM)

• Results displayed as a function of the above-thermal-leakage fraction (ATLF)
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Figure 2: Differences (in pcm) between predicted and measured keff of ATLF benchmarks using ENDF/B-VII.0 (in red) and the
ENDF/B-VIII.0β2 evaluation (in black).
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Future plans
• To improve the evaluation work by including newly measured data for fission and capture

cross sections, namely from the RPI and nTOF collaborations

• To include an improved set of resonance parameters for incident neutron energies above
500 eV. The present evaluation is based on the ENDF/B-VII.1, in which the set of res-
onances are pseudo-resonances with different statistical properties than the true reso-
nances in the energy range up 100 eV
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• To include improved distribution of the fission widths. Analyses of the 235U fission widths
showed that the number of degrees of freedom does not obey the chi-squared distribution
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Summary and Conclusions
• We applied the R-matrix SAMMY method using the Reich-Moore approximation to deter-

mine a consistent set of neutron resonance parameters for 235U

• The o23=CIELOb18 is currently part of the ENDF/B-VIII.0β3 (October 2016)

• Constraints applied on the o23 resonance parameter evaluation are

– Brooks’η experimental data

– Standard thermal cross sections and the fission integral between 7.8–11 eV

– New thermal Prompt Fission Neutron Spectra (PFNS)

• The present set of resonance parameters yields cross sections still in reasonable agree-
ment with the suite of experimental data

• The validation analysis on the thermal benchmarks showed good agreement with the ex-
perimental response and that the o23 resonance parameters are compatible with the cur-
rent values of ν̄ (from thermal constants) and thermal PFNS (average energy 2.00±0.01)

• Paper submitted to ND2016 conference proceedings

Conclusion : new resonance analysis allowed to combine new evaluation of Thermal
Neutron Constants, the recommended value of the fission resonance integral from 7.8-
11 eV, new PFNS evaluation, and to describe Brooks data while keeping an excellent
agreement with existing fission, capture and transmission measurements.
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