n+<sup>235</sup>U Resonance Parameters and Neutrons Multiplicities in the Energy Region below 100 eV and Future Plans

#### M.T. Pigni<sup>1</sup>, R. Capote<sup>2</sup>, A. Trkov<sup>2</sup>, V.G. Pronyaev<sup>3</sup>

- <sup>1</sup> Oak Ridge National Laboratory, USA
- <sup>2</sup> IAEA Nuclear Data Section, Austria
- <sup>3</sup> State Corporation Rosatom, Moscow, Russian Federation

CSEWG2016 - Evaluation session Upton, NY, November 2016

ORNL is managed by UT-Battelle for the US Department of Energy



### Outline

- Introduction : motivation and background
- Nuclear data evaluation overview for <sup>235</sup>U
- Brief description of the evaluation procedure with SAMMY
- Results
  - Work on n+<sup>235</sup>U cross sections
  - Neutron multiplicities  $\bar{v}(E)$  (Pronyaev/Capote)
  - Benchmark simulations (Trkov/Capote)
- Future plans
- Summary and conclusions
- Acknowledgments



# Introduction

### Motivation

- For nuclear critcality applications and many others, the existing evaluated data perform well in transport simulations partly owing to *compensating errors* in the nuclear data libraries
- CIELO collaboration provides a framework for nuclear data evaluation aimed to establish the highest fidelity general purpose nuclear database
- <sup>235</sup>U among <sup>1</sup>H,<sup>16</sup>O,<sup>56</sup>Fe,<sup>238</sup>U, <sup>239</sup>Pu is one of the highest priority isotopes

### Background

- Current status of <sup>235</sup>U evaluation in ENDF/B-VII.1 library (2011)
  - Resonance parameters are the same as ENDF/B-VI.8 release (ORNL/TM-13516)<sup>1</sup>
  - Description of the <sup>235</sup>U resonance evaluation can be found in NEA/WPEC-18
- <sup>235</sup>U ORNL resonance evaluation(=CIELOb18=**o23**) is part of the ENDF/B-VIII.0 $\beta$ 2 and  $\beta$ 3 releases (2016)

<sup>&</sup>lt;sup>1</sup>See also L. C. Leal, H. Derrien, N. M. Larson, R. Q. Wright, Nucl. Sci. Eng., 131 230 (1999).

# **Nuclear Data ORNL Evaluation Overview**

| No. | Nucleus (I <sup><i>π</i></sup> )     | <b>E</b> <sub>max</sub> | Method      | $J_{3^{-}}$ | $J_{4^-}$ |
|-----|--------------------------------------|-------------------------|-------------|-------------|-----------|
| 1   | <sup>235</sup> U (7/2 <sup>-</sup> ) | 2.25 keV                | Reich-Moore | 1433        | 1731      |

- The current ORNL resonance evaluation **o23** (ORNLv23) is an intermediate step of the evaluation process within CIELO
- The current **o23** resonance evaluation started from a set of resonance parameters (**o17**)
  - **o17** was documented in the ORNL presentation at the mini-CSEWG meeting (LANL, April 2016) and released in May 2016 as part of the ENDF/VIII.0 $\beta$ 1 release.
- Particular emphasis in producing **o23** was devoted to
  - Sub-thermal and thermal : Thermal Constants (Pronyaev, micro. data)
  - Fission integrals (7.8-11 eV)
  - Neutron incident energies up to 20 eV for *measurements of*  $\alpha = \sigma_{\gamma}/\sigma_f$  (or  $\eta$ )



# **Nuclear Data ORNL Evaluation Overview**

- The current ORNL resonance evaluation **o23** is generated by the SAMMY code using the *Reich-Moore approximation* 
  - All SAMMY inputs included in the current evaluation procedure are written using the most recent key-word for particle-pair definitions.
  - Isotopic impurities included
  - Parameters for the resolution functions (crunch data, γ-peak) of transmission experimental data (J. A. Harvey) retrieved from ORELA logbook (special thanks to K. Guber).
- Residuals and chi-squared of all experimental data



| the way of the set of the set of the set of the set of the | and the second second second second | a constant       | Contract and and the | and the state of the | and the second state and | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------|-------------------------------------|------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            |                                     |                  |                      |                                                                                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                            |                                     |                  | Deale.               | / lectore                                                                                                       |                          | CIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| + 5.0.4<br>3 4-JUN-86                                      | 0.31.27                             |                  | 735                  | 1                                                                                                               | at 19                    | in la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DATA FILE B                                                | EING ZERMED                         |                  |                      | O runs                                                                                                          | and the                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| * 7112.14                                                  |                                     | 1 + 1 1          |                      |                                                                                                                 |                          | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4-JUN-86 10.                                               | 38.05<br>EAR                        |                  |                      | 1011                                                                                                            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NGP CCN 1                                                  |                                     | 4 CSP<br>O DEC   | A<br>0               | NCA                                                                                                             | 500                      | 111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * 7HLM                                                     |                                     |                  |                      |                                                                                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3. 4-JUN-26 10.                                            | 38.40                               |                  | 10.0                 | 17 ~                                                                                                            | 5290 D-                  | T 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 75100<br>N.50                                              |                                     |                  |                      |                                                                                                                 |                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P.45<br>75100 0                                            |                                     |                  |                      |                                                                                                                 | 0 1                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 75108 467<br>75116 228                                     | 934 14<br>117                       | 40 1744<br>64 33 | 1208                 | 1591 126                                                                                                        | o 033<br>1 3             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 75132 1                                                    |                                     |                  | 00                   | 001                                                                                                             |                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| * 7HLH                                                     |                                     |                  |                      |                                                                                                                 |                          | ++:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| + 13,1<br>3 4-JUN-86 10.                                   | 10.15                               | 155166           | 22761                |                                                                                                                 |                          | . ++-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| * 711 11 11 326                                            | 0                                   | 11349            |                      |                                                                                                                 |                          | ++:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| + 2<br>3 4-JUN-86 10.4                                     | 0.58                                |                  |                      |                                                                                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 75100                                                      |                                     |                  |                      |                                                                                                                 |                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| + 8,1                                                      | 1 50                                |                  |                      |                                                                                                                 |                          | +++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5 2-30N-28 10.2                                            |                                     |                  |                      |                                                                                                                 |                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| I PARAMETER TØF<br>STARTING TIME                           | 1.0000<br>NUMBER                    | CRUNCH           | STARTING             | SECTION                                                                                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (NANØSECØNDS)<br>0.0000                                    | CHANNELS<br>200                     | FACTØR           | CHANNEL 384          |                                                                                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 400.0000                                                   | 8000                                | 40               | 10384                | 10000                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 516400.0000                                                | 2000                                | 1000             | 23384                | 23000                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3016400.0000<br>TAGS                                       | 0                                   |                  |                      |                                                                                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BASES                                                      |                                     |                  |                      |                                                                                                                 |                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TAGS                                                       |                                     |                  |                      |                                                                                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                            |                                     |                  |                      |                                                                                                                 |                          | and the second se |



# **SAMMY Algorithm**

The various reaction cross sections  $\sigma_{cc'}$  for an incoming channel c and outgoing channel c' can be written in terms of the matrix

$$X_{cc'} = \sqrt{P_c} L_c^{-1} \sum_{c''} \left[ (L^{-1} - R)^{-1} \right]_{cc''} R_{c''c'} \sqrt{P_{c'}} \delta_{JJ'}, \tag{1}$$

where, in the eliminated-channel approximation, the matrix *R* (or *R*-matrix) for the channel spin group defined by the total spin  $J^{\pi}$  is

$$R_{cc'} = \left[\sum_{\lambda=1}^{n} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E - \iota \bar{\Gamma}_{\lambda \gamma}/2} + R_{c}^{\text{ext}} \delta_{cc'}\right] \delta_{JJ'}$$
(2)

SAMMY derives from the best fit of experimental data the reducedwidth amplitude  $\gamma_{\lambda c}$  related to the channel width using

$$\Gamma_{\lambda c} = 2\gamma_{\lambda c}^2 P_c(E) , \qquad (3)$$

where the penetrability factors depend on the Coulomb functions  $F_{\ell}$ ,  $G_{\ell}$  as  $P_c(E) = ka/[F_{\ell}^2(ka,\eta) + G_{\ell}^2(ka,\eta)]$ .



### **Differential and Integral Data**

#### **Differential data**

- Application of the *R*-matrix SAMMY method (Reich-Moore) to determine a consistent set of neutron resonance parameters (RP) based on the fit of available experimental data (transmission, capture, angular distribution, ...)
- Statistical properties of RP such as average spacing  $\langle D_\ell \rangle$  and strength function  $S_\ell$



#### Integral data

- Resonance parameter and covariance are converted into the ENDF/B format - file 2 (parameter) and 32 (covariance matrix)
- Process ENDF/B file with processing codes as NJOY or AMPX in order to generate cross section in point-wise and/or group representation
- Test evaluations against integral benchmarks (e.g. reaction rate) sensitive to a specific energy range (RRR)

$$R = \int_{RR} \sigma(E) \phi(E) dE \qquad (4)$$



### **Thermal Cross Sections and Integrals**

- o23 values for fission and capture thermal cross sections are based on <sup>235</sup>U(n,f) thermal constants obtained on the basis of microscopic data (i.e., only considering Wallner thermal capture measurements)
- Fission integral (I<sub>4</sub>=247.0 b⋅eV in the Figure below) between 7.8 and 11 eV based on recommendation of Neutron Standards (246.4 b⋅eV)



### **Results**



- n+<sup>235</sup>U  $\eta$  measurements of Brooks, Wartena, and Weigmann (left) and Gwin's fission measured cross sections (right) compared to ENDF/B-VII.1 and ENDF/B-VIII.0 $\beta$ 2 values.
- the CIELO  $\eta$  (decreased) values are, on average, in better agreement with the experimental data
  - achieved by increasing the capture cross sections, mostly in the valley of the resonances while keeping their peak values unchanged. The resonance at  $E_n=2$  eV is clearly an example.
- The sensitivity of the resonance parameters to fission cross sections seems to be more relevant than to capture cross sections at neutron energies  $\geq$  4 eV (see fission cross sections shown in blue continuous line).



### **Other Results**



# Neutron multiplicities $\bar{v}(E)^2$

• In the observed  $\bar{v}(E)$  there are clear fluctuations roughly correlated with the energy of compound nucleus resonances, but also partially explained by the influence of the  $(n, \gamma f)$  process, where a  $\gamma$  is emitted prior to the fission event



Figure 1:  $\bar{v}(E)$  relative to  $\bar{v}(E_{\text{th}})$  calculated at thermal energy (0.0253 eV) for n+<sup>235</sup>U reactions. Several experimental data sets are compared to three evaluated data.



<sup>2</sup>Pronyaev/Capote

### **ATLF benchmark simulations**<sup>3</sup>

- Results of the suite of integral benchmarks for thermal solutions of highly enriched uranium (HEU-SOL-THERM)
- Results displayed as a function of the above-thermal-leakage fraction (ATLF)



Figure 2: Differences (in pcm) between predicted and measured  $k_{eff}$  of ATLF benchmarks using ENDF/B-VII.0 (in red) and the ENDF/B-VIII.0 $\beta_2$  evaluation (in black).



<sup>3</sup>Trkov/Capote

## **Future plans**

- To improve the evaluation work by including newly measured data for fission and capture cross sections, namely from the RPI and nTOF collaborations
- To include an improved set of resonance parameters for incident neutron energies above 500 eV. The present evaluation is based on the ENDF/B-VII.1, in which the set of resonances are pseudo-resonances with different statistical properties than the true resonances in the energy range up 100 eV



• To include improved distribution of the fission widths. Analyses of the <sup>235</sup>U fission widths showed that the number of degrees of freedom does not obey the chi-squared distribution



## **Summary and Conclusions**

- We applied the *R*-matrix SAMMY method using the Reich-Moore approximation to determine a consistent set of neutron resonance parameters for <sup>235</sup>U
- The **o23**=CIELOb18 is currently part of the ENDF/B-VIII.0 $\beta$ 3 (October 2016)
- Constraints applied on the **o23** resonance parameter evaluation are
  - Brooks' $\eta$  experimental data
  - Standard thermal cross sections and the fission integral between 7.8-11 eV
  - New thermal Prompt Fission Neutron Spectra (PFNS)
- The present set of resonance parameters yields cross sections still in reasonable agreement with the suite of experimental data
- The validation analysis on the thermal benchmarks showed good agreement with the experimental response and that the **o23** resonance parameters are compatible with the current values of  $\bar{v}$  (from thermal constants) and thermal PFNS (average energy 2.00±0.01)
- Paper submitted to ND2016 conference proceedings

**Conclusion :** new resonance analysis allowed to combine new evaluation of Thermal Neutron Constants, the recommended value of the fission resonance integral from 7.8-11 eV, new PFNS evaluation, and to describe Brooks data while keeping an excellent agreement with existing fission, capture and transmission measurements.

### **Acknowledgments**

This work was supported by the US Department of Energy (DOE), Nuclear Criticality Safety Program (NCSP) funded and managed by the National Nuclear Security Administration for DOE.

### Thank you!

