Status of the ENDF/B-VIII beta3 library

D. Brown
Beta0 highlights (2011-2015):

- **CIELO evaluations:**
 - ^{16}O
 - ^{56}Fe
 - ^{235}U
 - ^{238}U
 - ^{239}Pu

- **Non-CIELO:**
 - ^{54}Fe, ^{57}Fe, ^{58}Fe
 - n
 - Yb, Dy, Os (JENDL4)
 - ^{18}O (RUSFOND)
 - $^{63,65}\text{Cu}$
 - 182,183,184,186W

- **EPICS2014:**
 - photoat
 - electrons
 - atomic_relax

- **Decay data:**
 - ^{40}Ar
 - $^{236m1}\text{Np}$
 - 58-61Ni
 - EGAF gammas
 - Bug fixes

- **Thermal Scattering:**
 - ^{90}Kr
 - $^{140,141}\text{Cs}$
 - ^{143}Ba
 - $^{143,144,145}\text{La}$
 - ^{134}Sb
 - ^{138}I

 - MAT fixes
 - SiO_2 (x2)
 - SiC
 - Lucite
 - H_2O
 - D_2O (x2)
Beta1 highlights
(corrections after mini-CSEWG Apr. 2016)

- **CIELO:**
 - ^{56}Fe
 - ^{235}U
 - ^{238}U

- **Non-CIELO:**
 - ^{7}Be
 - $^{12,13}\text{C}$
 - $^{54,57}\text{Fe}$
 - Bug fixes
Beta2 highlights
(so we all have something to present at ND2016...)

- **CIELO:**
 - 56Fe
 - 235U
 - 238U
 - 239Pu

- **Non-CIELO:**
 - 7Be
 - 54Fe
 - 40Ca
 - Bug fixes

- **Thermal scattering:**
 - BeO (x2)
 - Polyethylene
Beta3 highlights

- **CIELO:**
 - 56Fe
 - 239Pu

- **Non-CIELO:**
 - 54,57Fe
 - 35,37Cl
 - 59Co
 - 73,74As
 - 78Kr
 - 132Te
 - 124Xe
 - 174, 176, 178, 179, 180 Hf

- **Charged particles:**
 - 7Be
 - RQ Wright’s nubars
 - 7Li, $p+a$, $p+^{13}$C
 - $d+7$Li
 - $t+a$, $t+^{7}$Li
 - 3He+a, 3He+3He
 - $a+a$

- **Thermal scattering:**
 - D_2O (x2) new temps
 - Be(metal)
 - UO_2 (x2)
 - Graphite
 - Reactor graphite
Late things

- 235U (arrived after beta3)
- 238U (arrived after beta3)
- Standards (not arrived yet)

- Working though bug lists supplied by
 - Kent Parsons (LANL)
 - Cedric Jouanne (CEA)
ADVANCE feedback available on all evaluations

- If you have questions about a report, I can walk you through it
ENDF Hackathon© 2016

D. Brown, T. Kawano,
S. Mughabghab, G. Nobre,
V. Sobes,
I. Thompson (remotely)
What’s all this about?

- Clean up as many ENDF evaluations as possible using whatever evaluation tools you have
- Donuts and coffee provided…
- Schedule:
 - Monday-Thursday — kill bugs
 - Friday — review changes, make sure OK
40% reduction in open trackers

Lots of old bugs have been fixed
This year’s winner of the golden bug, for most dead bugs

- **Champion: Toshihiko Kawano!**
 - 19 commits (including a 2 self-inflicted bug penalty)

- **Reserve champion: Dave Brown**
 - 9 commits + 1 bonus commit for being organizer and donut purchaser
Big Changes

- 63,65Cu finalized (VS+TK)
- R.Q. Wright’s nubar evaluations added to all MA (TK)
- Death to SLBW format, plus other minor RRR fixes (DB+GN)
- Proper extension of 7Be to 20 MeV, preserving Page’s evaluation (IT)
- 239U RRR (IT)
- Hf fixes (TK): new fast for 174,176-180
- 154Eu thermal cross section fix (TK+SM)
- 73,74As evaluations recalculated in fast region (TK)
- 93Nb RR updated (TK)
- 35,37Cl capture cross sections fixed (TK)
- 76Kr redo fast region, JENDL-4 RRR (TK)
- 124Xe redo fast region (TK)
- 132Te redo fast region (TK)
- ECPL translated to ENDF (IT)
SLBW format eliminated in ENDF library & messed up RRR J^Π assignments corrected

Bad J^Π: 105Rh, 148m1Pm, 241U, 243Pu

SLBW->MLBW: 105Rh, 135Xe, 148m1Pm, 241U, 243Pu
Wish we could have gotten to these...

- ^{12}C discrete gamma’s added for use in assays
- ^{240}Pu thermal cross sections tweaked to resolve PU-SOL-THERM
- deuteron masses
- removal of all pseudo-levels
- energy balance
- Reduce signal/noise for FUDGE errors
Automated fixes?

- Zeros in Legendre moment data
- Norms of all PDFs set to 1.0000000000
- BR’s all sum to 1.0000000
- Tweak Q’s & Thresholds
“Minor tweak” to 240Pu?
Background

- We always do terrible with PU-SOL-THERM assemblies (some ZPRs too)
 - Is it 239Pu or 240Pu?
 - New CIELO evaluation of 239Pu did not fix

- In 2010 revision [#111] a new ORNL+LANL evaluation was submitted for 240Pu
 - It made PU-SOL-THERMs worse (See Skip’s 2010 CSEWG validation talk)
 - We reverted to ENDF/B-VII.0 RRR in revision [#175]

- JENDL-4.0 adopted new ORNL RRR
Tracker [#633]: $^{240}\text{Pu}(n,\text{el})$ thermal cross section is very low

Thanks Boris!
Here’s a similar plot, including the Atlas value
σ_s = 1.73 ± 0.10 b
=σ_{coh} = 4\pi(g_+a_++g_-a_-)^2 \text{ since } J^\Pi = 0^+

“Can be determined very accurately” – S. Mughabghab

Determined from pair of neutron diffraction experiments
- (ANL) G.H. Lander, M.H. Mueller, ACR/B 27, 2284 (1971)
- (LANL) J.L. Green et al., JNM, 34, 281 (1970)
Things we tried

- Rework bound levels to match Atlas values for thermal elastic, capture and fission (carefully, there is MT32 data to go with it)
- Reconstruct angular distribution using FUDGE (better physics, but doesn’t do anything to benchmarking)
Changed bound resonances
Fission lowered a little from B7.1

It was difficult to match Atlas exactly by hand.
ORNL resonances already agreed with Atlas
Testing

<table>
<thead>
<tr>
<th></th>
<th>ICSBEP</th>
<th>ENDF/B-VII.1 == ENDF/B-VIII.b2</th>
<th>ENDF/B-VIII.b2+rev111 (ORNL)</th>
<th>ENDF/B-VIII.b2+bd level fix</th>
<th>ENDF/B-VIII.b2+bd level fix, angDist</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMF002 ("dirty Jezebel")</td>
<td>1.000(2)</td>
<td>0.999999(8)</td>
<td>0.99997(8)</td>
<td>1.00002(8)</td>
<td>0.99995(8)</td>
</tr>
<tr>
<td>MCF002 (ZPR6/7 "high 240Pu")</td>
<td>0.9874(22)</td>
<td>0.98003(7)</td>
<td>0.97944(7)</td>
<td>0.97985(7)</td>
<td>0.97955(7)</td>
</tr>
<tr>
<td>PST18.2</td>
<td>1.0000(34)</td>
<td>1.01173(9)</td>
<td>1.01474(12)</td>
<td>1.01053(12)</td>
<td>1.01078(12)</td>
</tr>
<tr>
<td>PST18.9</td>
<td>1.0000(34)</td>
<td>0.99815(10)</td>
<td>1.00223(10)</td>
<td>0.99836(10)</td>
<td>0.99830(10)</td>
</tr>
</tbody>
</table>

Performance comparable to B7.1