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• In the design of fusion reactors, 

radiation transport calculations are 

very important 

• Both deterministic (Discrete 

Ordinates) and stochastic (Monte 

Carlo) methods are used 

• These transport codes need to 

have accurate cross section libraries 

 

ITER 

ITER Blanket (shield) Module 
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Fusion Neutronics Calculations 
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• Neutron flux/fluence (neutron) 

• magnet  

• Radiation damage/dpa (neutron) 

• structural material degradation 

• He production (neutron) 

• reweldability 

• T production (neutron) 

• breeding, environmental 

• Radiation dose (neutron+photon) 

• insulator  

• Total nuclear heating (neutron+photon) 

• coolant system design, thermal 

stress, magnets  

 Need accurate neutron and photon 

libraries 
Central Bolt 

Shield Block 
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• The Fusion Evaluated Nuclear Data Library (FENDL) is an 

international effort coordinated by the IAEA Nuclear Data Section 

• Assembles a collection of the best nuclear data from national 

cross section data libraries for fusion applications 

• ENDF/B (US), JENDL (Japan), JEFF (Europe), BROND (Russia) 

• Process uses fusion specific experimental and calculational 

benchmarks to evaluate the data 
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• FENDL-2.1 (71 isotopes, 2003) is reference library for ITER 

• FENDL-3.1b has recently been released with 180 isotopes and 

energies up to 150 MeV for neutrons, protons, and deuterons 

• Libraries available on-line:  
• https://www-nds.iaea.org/fendl21/ 

• https://www-nds.iaea.org/fendl3/ 

Source of FENDL-2.1 data: 
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• 65/180 isotopes in FENDL-3.1b come from ENDF/B-VII.1 
•See Table 1 in INDC(NDS)-0628 

• Some key isotopes for this work: 

Isotope FENDL-2.1 FENDL-3.1b 

H-1 JENDL-3.3 ENDF/B-VII.1 

0-16 ENDF/B-VI.8 ENDF/B-VII.1 

Cr-52 ENDF/B-VI.8 ENDF/B-VII.1 

Fe-56 JEFF-3 JEFF-3.1.1 

Ni-58 JEFF-3 ENDF/B-VII.0 

Cu-63,65 ENDF/B-VI.8 ENDF/B-VII.0 
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• Significant efforts performed evaluating neutron data for FENDL   
• FENDL provides ACE formatted neutron data libraries for use with MCNP  

• Less effort examining photon cross section data in the FENDL  

evaluation process 

• No MCNP (ACE formatted) photon libraries provided with FENDL 

 But photon heating contributes 90% of the nuclear heating for 

important fusion materials (e.g. stainless steel, Cu, tungsten) 

 MCNP Photon Data:  
•Standard library: mcplib04/84 (note: mcplib84 corrects bug in 

mcplib04) 

•New library: eprdata12 (for MCNP6) 

• includes low energy < 1keV data 
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 Want to look at the impact of using the updated neutron 

and photon libraries in a realistic model of ITER 

 Libraries examined: 

• Neutron: 

1. FENDL-2.1 (21c) 

2. FENDL-3.1b (31c) 

3. ENDF/B-VII.0 (70c) 

4. ENDF/B-VII.1 (80c) 

• Photon: 

1. mcplib84 (84p) 

2. eprdata12 (12p) 
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• Based on an early ITER design 

• Developed for the FENDL 

evaluation process 

• Simple but realistic model of 

ITER with the Inboard and 

Outboard portions modeled with 

the plasma in between 

• D-T fusion (14.1 MeV neutrons) 

• Flux (neutron and photon), 

heating, dpa, and gas production 

calculated 

M. Sawan, FENDL Neutronics Benchmark: Specifications for 

the calculational and shielding benchmark, INDC(NDS)-316, 

December 1994 

Plasma 

region 
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• With updated FENDL-3.1b neutron library (31c) see neutron fluxes up to 8% higher 

than FENDL-2.1 (21c) at deep depths in TF coil  

• With ENDF/B-VII.1 (80c) see neutron fluxes up to 3% lower  

• In FENDL-3.1b, Fe-56 and Cu data come from JEFF-3.1.1 and ENDF/B-VII.0 

Max. relative error <0.26% 
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• With ENDF/B-VII.0-1 (70c, 80c) 

see lower flux at TF coil  

•With updated FENDL-3.1b neutron 

library (31c) see a harder spectrum 

than FENDL-2.1 (21c) at TF coil  

• With ENDF/B-VII.0-1 (70c, 80c) 

also see a harder spectrum at TF coil 
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• Photon fluxes roughly follow neutron fluxes (see structure at VV shell) 

• With updated FENDL-3.1b neutron library (31c) see photon fluxes up 

to 9% higher than FENDL-2.1 (21c) at deep depths in TF coil  

• With ENDF/B-VII.1 (80c) see neutron fluxes up to 6% lower 

Max. relative error <0.25% 
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• With updated FENDL-3.1b neutron library (31c) see total heating up 

to 6% higher than FENDL-2.1 (21c) at deep depths in TF coil  

• With ENDF/B-VII.1 (80c) see total heating up to 3% lower 

Max. relative error <0.27% Valleys are in SS 316 
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• With updated FENDL-3.1b neutron library (31c) see neutron heating 

up to 15% higher than FENDL-2.1 (21c) at deep depths in TF coil  

• With ENDF/B-VII.1 (80c) see neutron heating up to 70% higher 
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• With updated FENDL-3.1b neutron library (31c) see photon heating 

up to 5% higher than FENDL-2.1 (21c) at deep depths in TF coil  

• With ENDF/B-VII.1 (80c) see photon heating up to 4% lower 
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• With the updated photon library (12p), we see good agreement with 

the standard photon library (84p) 

Max. relative error <0.27% 
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21c+84p 31c+84p % diff. 80c+84p % diff. 

IB  

FW Cu 9.16416E+00 9.13434E+00 -0.33 9.18390E+00 0.22 

FW SS (Fe) 7.78771E+00 7.78131E+00 -0.08 8.22207E+00 5.58 

VV Inconel (Ni) 1.01076E-02 1.04166E-02 3.06 1.01171E-02 0.09 

VV SS (Fe) 3.35716E-03 3.45015E-03 2.77 3.46625E-03 3.25 

Magnet Cu 3.88072E-05 4.06994E-05 4.88 3.84160E-05 -1.01 

OB  

FW Cu 1.37635E+01 1.37245E+01 -0.28 1.37831E+01 0.14 

FW SS (Fe) 1.18140E+01 1.18099E+01 -0.03 1.24828E+01 5.66 

VV Inconel (Ni) 1.38127E-02 1.42400E-02 3.09 1.38188E-02 0.04 

VV SS (Fe) 5.02005E-03 5.16308E-03 2.85 5.18489E-03 3.28 

Magnet Cu 5.61928E-06 5.95996E-06 6.06 5.55328E-06 -1.17 

Max. relative error <0.15% 

• different neutron flux and spectrum at FWSS, VV, magnet 
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Max. relative error <0.19% 

• different neutron flux and spectrum at FWSS, VV, magnet 

21c+84p 31c+84p % diff. 80c+84p % diff. 
IB 

FW Be 4.09900E+03 4.10018E+03 0.03 4.12365E+03 0.60  

FW CuBeNi 2.10289E+02 2.11113E+02 0.39 2.12205E+02 0.91 

FW SS316 1.77311E+02 1.84877E+02 4.27 1.88600E+02 6.37 

VV Inconel 6.76921E-02 7.98705E-02 17.99 7.68869E-02 13.58 

VV SS316 7.62989E-02 8.24488E-02 8.06 7.97493E-02 4.52 

Magnet Cu 3.80472E-04 4.01679E-04 5.57 3.79698E-04 -0.20 

OB 

FW Be 5.98127E+03 5.98538E+03 0.07 6.01139E+03 0.50 

FW CuBeNi 3.23240E+02 3.24749E+02 0.47 3.26056E+02 0.87 

FW SS316 2.45343E+02 2.56222E+02 4.43 2.62737E+02 7.09 

VV Inconel 9.04495E-02 1.06787E-01 18.06 1.02669E-01 13.51 

VV SS316 1.07582E-01 1.16363E-01 8.16 1.12537E-01 4.61 

Magnet Cu 5.56782E-05 5.93275E-05 6.55 5.53346E-05 -0.62 
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Max. relative error <0.27% 
• different neutron flux and spectrum at FWSS, VV, magnet 

• T production substantially different in SS 316 for 31c versus 80c 

• FENDL-3.1b (31c) and ENDF/B-VII.1 (80c) still missing rxn mt=205 

for tungsten isotopes 

21c+84p 31c+84p % diff. 80c+84p % diff. 
IB 

FW Be 6.10392E+01 6.10362E+01 0.00 6.11245E+01 0.14 

FW CuBeNi 1.56402E+00 1.56365E+00 -0.02 1.56666E+00 0.17 

FW SS316 1.19527E-01 1.19116E-01 -0.34 2.22290E-01 85.97 

VV Inconel 2.92231E-06 6.92198E-06 136.87 6.86316E-06 134.85 

VV SS316 2.47763E-05 2.53464E-05 2.30 4.19001E-05 69.11 

Magnet (Cu) 1.34326E-06 1.42722E-06 6.25 1.30178E-06 -3.09 

OB 

FW Be 8.96548E+01 8.96782E+01 0.03 8.97799E+01 0.14 

FW CuBeNi 2.44711E+00 2.44778E+00 0.03 2.45166E+00 0.19 

FW SS316 1.86724E-01 1.86228E-01 -0.27 3.49079E-01 86.95 

VV Inconel 3.78742E-06 9.02266E-06 138.23 8.95916E-06 136.55 

VV SS316 3.57871E-05 3.66218E-05 2.33 6.04256E-05 68.85 

Magnet (Cu) 1.82708E-07 1.95836E-07 7.19 1.76016E-07 -3.66 
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• For realistic ITER calculations, use of updated photon and 

neutron libraries produces neutron fluxes from 3% lower to 

8% higher than the reference libraries 

• For realistic ITER calculations, use of updated photon and 

neutron libraries produces photon fluxes from 6% lower to 9% 

higher than the reference libraries 

• For realistic ITER calculations, use of updated photon and 

neutron libraries produces total nuclear heating from 3% lower 

to 6% higher than the reference libraries 
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• Repeat with FENDL-3.2 and ENDF/B-VIII when released  

• Repeat comparisons with a detailed 3-D model of ITER using 

DAG-MCNP (CAD based version of MCNP developed at UW) 
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