

GCFR-PROTEUS EXPERIMENTAL PROGRAM CORE 11- NOMINAL CORE CONFIGURATION BENCHMARK

Gareth Newman | Graduate Student, Material Science Department, Nuclear Engineering Program Kelly Jordan | Principle Investigator, Material Science Department, Nuclear Engineering Program Gregory Perret | Collaborator, Paul Scherrer Institut John Bess | Collaborator, Idaho National Lab

Special Thanks

• This project was supported by the U.S. Department of Energy, NEUP program.

U.S. Department of Energy

Purpose

- Re-evaluate experiments of GCFR Core designs performed in the 1970s at the PROTEUS reactor.
- Preserve decades old integral nuclear data.

• Enable the validation of thorium, neptunium, plutonium, and uranium cross sections.

Purpose of the ICSBEP and IRPhEP

Benchmark Process General Overview

- 1. Identify Experiment
- 2. Evaluate Experiment
 - a. Prepare Benchmark Report
- 3. Internal Review of Benchmark Report
- 4. Submit Benchmark Experiment to ICSBEP/IRPhEP

- 5. Independent Review of Benchmark Report
- Distribution of Benchmark Report to Technical Review Group
- 7. Technical Review Meeting
- 8. Resolve Action Items
- 9. Handbook Publication

PROTEUS

- Lifetime: February 1968-April 2011
- Thermal Power Rating: 1 kilowatt.
- Driver Region Dimension: 3.5m diameter/ 3.5m height.
- Driver Fuel: 1m length UO₂ at 5 w/o.
- Central Cavity Dimension: 1.2m diameter/10m height.
- Central Cavity Fuel: Variable

PROTEUS

GCFR-PROTEUS

- April 1972 to April 1979 Benchmark Experiments in PROTEUS to validate Neutronics calculations in GCFR core
- Increased interest in GFR concepts & Th²³²/U²³³ fuel cycle in the 70's
- Experiments required for accurate measurement of basic neutron cross section data, supplementing design calculations
- Initial cores MOX cores (U238/Pu239 fuel cycle)
- Latter cores dedicated to Th232/U233 fuel cycle, homogeneous & heterogeneous distributions of Thorium
- C8/F9, F8/F9, C2/F9 etc, characterised breeding ratio, power distribution, neutron spectrum, axial & radial profiles etc.
- Experimental results compared with deterministic calculations

Proteus GCFR Configuration

Proteus GCFR Configuration

Measurement Techniques

- Spectral Indices: Foil activation / fission chambers
- γ-counting : Twin Ge(Li) or Nal detectors

Foil Measurements

Core 11 MCNP Model

- 1 Test Zone (MOX lattice)
- 2 Blanket Zone (UO2 lattice)
- 3 Buffer zone
- 4 D20 zone
- 5 Graphite Driver Zone
- 6 Grid plates
- 7 Reactor support plates
- 8 Steel Shielding

Core 11 Energy Profile & Axial Flux Distribution

Model Techniques

- Volume Averaging
- RR = F4 * XS
- Spectral Index = $\frac{RR_x}{RR_y}$
- Ratio allows for direct comparison between foil and model volumes

Summary of experimental uncertainties in GCFR-PROTEUS Core 11

Spectral Indices	Measurement Uncertainty (Δ/MEAN)	Evaluated Experimental Uncertainty (Δ/MEAN)	Total Experimental Uncertainty (Δ/MEAN)
c8/f9	1.4630E-03 (1.100%)	1.476E-04 (0.112%)	1.470E-03 (1.106%)
f8/f9	4.0430E-04 (1.300%)	7.427E-05 (0.235%)	4.111E-04 (1.322%)
f5/f9	1.4140E-02 (1.400%)	6.774E-04 (0.066%)	1.416E-02 (1.402%)
c2/f9	2.6000E-03 (1.300%)	1.058E-03 (0.514%)	2.807E-03 (1.404%)
f2/f9	1.6120E-04 (2.000%)	1.855E-05 (0.244%)	1.623E-04 (2.013%)
f3/f9	1.9760E-02 (1.300%)	1.288E-03 (0.086%)	1.980E-02 (1.303%)
(n,2n)2/c2	1.7100E-04 (2.500%)	1.018E-04 (1.333%)	1.990E-04 (2.910%)
c7/f9	1.8998E-02 (2.300%)	1.321E-03 (0.160%)	1.904E-02 (2.306%)
f7/f9	4.0860E-03 (1.800%)	3.072E-04 (0.135%)	4.098E-03 (1.805%)

Perturbations

Type:

Density, isotope fraction, composition, impurities *Materials:*

> Fuel, structural materials (steel/aluminum), D₂O, graphite

Scaling Factors:

MCNP limitations 10 to 100

Comparison of ENDF Cross Sections Core 11

Spectral Index

Comparison of Cross Sections Core 11

Core 15 Model

Comparison of Cross Sections

Questions?

http://blasst.edu.au/benchmarking.html

Axial Distance (cm)

Axial Distance (cm)