

Member of the US Nuclear Data Program

Argonne Nuclear Data Program

Nuclear Data Compilations & Evaluations - 90%

- nuclear structure compilations and evaluations
 ENSDF & XUNDL
- evaluation of atomic masses and nuclear properties AME & NuBase
- decay data evaluations in support of IAEA-CRP & other horizontal evaluations (nuclear isomers, medical isotopes, etc.)

Complementary ND Research Activities -10%

 \checkmark intersections between basic and applied nuclear physics & astrophysics - via collaborative agreements with a little or no cost to USNDP

2016 USNDP Meeting, November 16-18, 2016, BNL

ENSDF evaluations

22 mass chains permanently assigned to ANL (NSDD-IAEA)

Evaluator Α **NDS** 106 NDS 109 (2008) D. DeFrenne & A. Negret 107 NDS 109 (2008) J. Blachot 108 updated in 2008 J. Blachot 109 NDS 107 (2006) S. Kumar, J. Chen & F.G. Kondev 110 NDS 113 (2012) G. Gurdal & F.G. Kondev 111 NDS 110 (2009) J. Blachot 112 NDS 124 (2015) S. Lalkovski & F.G. Kondev 176 NDS 107 (2006) M.S. Basunia 177 NDS 98 (2003) F.G. Kondev 178 NDS 110 (2009) E. Browne 179 NDS 110 (2009) C.M. Baglin 199 NDS 108 (2007) B. Singh 200 NDS 108 (2007) F.G. Kondev & S. Lalkovski 201 NDS 108 (2007) F.G. Kondev 202 NDS 109 (2008) S. Zhu & F.G. Kondev 203 NDS 105 (2005) F.G. Kondev 204 NDS 111 (2010) C.J. Chiara & F.G. Kondev 205 NDS 101 (2004) F.G. Kondev 206 NDS 109 (2008) F.G. Kondev 207 NDS 112 (2011) F.G. Kondev & S. Lalkovski 208 NDS 108 (2007) M. Martin 209 NDS 126 (2015) J. Chen & F.G. Kondev

outside the ANL region

✓ A=133 with the St. Petersburg group

- ✓ A=188 (with S. Juutinen, U. Jyvaskyla and D. Hartley, USNA)
- ✓ A=87, 227 (ICTP-IAEA, Trieste workshops)

training & mentoring

- ✓ very good post-docs C. Chiara (US Army Lab.), S. Zhu (ANL-PHY) & J. Chen (MSU)
- ✓ NSDD collaborators S. Lalkovski (U. Sofia) and S. Kumar (U. Delhi) - India-US fellowship stationed at ANL for 9 months
- new, positive development (following the USNDP review) Yuichi Ichikawa (RIKEN)

Nuclear Data

ENSDF evaluations - cont.

• N=126 factory (future)

contributions to XUNDL compilation effort

IAEA-CRPs & Medical Isotopes ND needs

- IAEA-CRP on "Nuclear data for charged-particle monitor reactions and medical isotope production" - led by R. Capote (IAEA-NDS)
 - ✓ decay data evaluations of ⁴⁴Ti, ⁶⁷Cu & ¹⁷⁸Ta
 - ✓ measurements: ⁶⁶Ga and ⁶⁷Cu gaps in nuclear data

Precise absolute γ -ray and β^- -decay branching intensities in the decay of $^{67}_{29}$ Cu

J. Chen,^{1,*} F. G. Kondev,^{1,†} I. Ahmad,² M. P. Carpenter,² J. P. Greene,² R. V. F. Janssens,² S. Zhu,² D. Ehst,¹ V. Makarashvili,¹ D. Rotsch,¹ and N. A. Smith¹

Continue collaborations with ANU and IAEA-NDS on improving atomic and decay data for Auger Emitters

issues with ^{197m}Hg decay data
 theranostic nuclide - imaging & Auger
 collaboration with O. Lebeda (Academy of Science, Czech Republic) - both new measurements & evaluation

Atomic Mass Evaluation & NuBase

AME2016 & NUBASE2016

✓ work essentially completed - 4 years cycle
 ✓ will be published in February 2017 in Chinese Physics C

AME2016: continuing impact of direct mass spectrometry techniques using Penning Traps & Storage Rings spectrometers - high precision & far from stability ... also new data in the heavy-element region ...

Direct high-precision mass measurements on ^{241,243}Am, ²⁴⁴Pu, and ²⁴⁹Cf

M. Eibach,^{1,2,*} T. Beyer,¹ K. Blaum,¹ M. Block,³ Ch. E. Düllmann,^{3,4,5} K. Eberhardt,^{2,5} J. Grund,⁴ Sz. Nagy,¹ H. Nitsche,^{6,7} W. Nörtershäuser,^{2,3,8} D. Renisch,² K. P. Rykaczewski,⁹ F. Schneider,^{2,10} C. Smorra,^{1,†} J. Vieten,¹¹ M. Wang,^{1,12,13} and K. Wendt¹⁰

✓ experimental masses for 1/4 of the Chart of Nuclei rely on α-decay data that are measured using magnetic spectrographs or/and Si detectors
 ✓ BUT all those measurements are relative to callibrant nuclides - based on 29 absolute α-decay energy measurements by A. Ritz, ADNDT 47 (1991) 205

Direct high-precision mass measurements on ^{241,243}Am, ²⁴⁴Pu, and ²⁴⁹Cf

M. Eibach,^{1,2,*} T. Beyer,¹ K. Blaum,¹ M. Block,³ Ch. E. Düllmann,^{3,4,5} K. Eberhardt,^{2,5} J. Grund,⁴ Sz. Nagy,¹ H. Nitsche,^{6,7} W. Nörtershäuser,^{2,3,8} D. Renisch,² K. P. Rykaczewski,⁹ F. Schneider,^{2,10} C. Smorra,^{1,†} J. Vieten,¹¹ M. Wang,^{1,12,13} and K. Wendt¹⁰

Recommendations: new, high-precision $E\alpha$ values for ²⁴⁵Cm and ²⁴⁹Cf

Precise measurements of the 245 Cm α -decay energies and their relevance to the 249 Cf- 241 Am mass anomaly

F.G. Kondev,* I. Ahmad, and J.P. Greene

(to be published)

new, high-precision measurements at ANL

✓ thin, mass-separated sources of ²⁴⁹Cf and ²⁴⁵Cm
 ✓ PIPS (FWHM=9 keV) Si detectors (Ω<0.1%)
 ✓ ANL magnetic spectrograph (FWHM=5 keV) data for ²⁴⁹Cf- digitized & reanalyzed

calibration (important!)

relative to absolute α -decay energies of 91Rytz

- ✓ Eα(²⁵⁰Cf)=6030.22 (20) keV
- ✓ Eα(²⁴⁴Cm)=5804.77 (5) keV
- ✓ Eα(²⁴⁸Cm)=5078.38 (25) keV

What could be wrong?

- ✓ Penning Trap data possible, but unlikely ...
- Ritz recommended (absolute) Eα values there are some hints here HUGE impact we must reconsider all α-decay measurements in the Chart of Nuclides ...

The path forward?

- (short term) new measurements with CPT to directly test Ritz absolute Eα using ²²⁸Th source -a chain of α emitters, e.g. ²²⁸Th, ²²⁴Ra, ²²⁰Rn, ²¹⁶Po (in collaboration with G. Savard's group at ANL)
- (long term) continuation of the Ritz evaluation work is urgently needed larger international effort under the IAEA-NDS auspices?

PHYSICAL REVIEW C 91, 044310 (2015) High-resolution α and electron spectroscopy of ²⁴⁹₉₈Cf

I. Ahmad, J. P. Greene, F. G. Kondev, and S. Zhu Argonne National Laboratory, Argonne, Illinois 60439, USA

Nuclear Data Research Activities

relatively small effort (0.1 FTE) - complements and benefits the evaluation activities - sought after collaborator with little or no cost to USNDP

- at ANL nuclei far from stability, spectroscopy of heavy and super-heavy nuclei, K-isomers, beta-delayed spectroscopy & mass measurements; *decay spectroscopy* of actinide nuclei and nuclei of importance to applications of medical isotopes and metrology
 - CARIBU properties of neutron-rich nuclei (nuclear structure & masses, astrophysics & applications - beta-delayed gamma's and neutrons, independent fission yields & isomeric ratios in fission)
- at MSU (Coulex & decay spectroscopy), TRIUMF (decay spectroscopy) & RIKEN (decay spectroscopy) - properties of neutron-rich nuclei far from the line of stability
- at Australian National University & RCNP-Osaka (isomers, astrophysics & medical isotopes physics), at Jyvaskyla University (spectroscopy of SHE)

Decay data on ¹⁶⁰Eu in the rare-earth region

π5/2[413] v5/2[523]

(5⁻)

CARIBU & X Array & SATURN @ANL

with D.J. Hartley (USNA) & ANL-PHY

Previous $T_{1/2}$: 31(4)s, 41(4)s, 50(10)s, 53(10)s, assuming a single (low-spin) B-decaying state **Present T**_{1/2}: lifetimes of γ 's fell into 2 values (e.g. 2 isomers)

 $\pi 5/2[413] \times 5/2[523] \rightarrow K^{\pi} = 5^{-} \& 0^{-}$

Two different decay schemes proposed, ours differs from both! 1999-keV state: log ft ≈ 5.0 -> related configurations

> **CPT** mass measurements: excitation energy of the isomer ✓ independent FY isomeric ratio

Future (FY17 and beyond) Plans

Continue AME & NuBase collaborative activities

 \checkmark maintain the currency (4yr cycle) and quality

Continue collaborations with IAEA-NDS and ANU on medical isotopes Nuclear Data needs & improving the Nuclear Data for Auger emitters

□ Continue research activities with emphasis on nuclear structure physics and astrophysics, and their intersection with the applied nuclear physics

- ATLAS/CARIBU nuclear structure, masses & astrophysics, betadelayed gammas & neutrons, fission yields and isomeric ratios, ...
- ✓ NSCL (FRIB), RIKEN & IMP- nuclear structure, masses & astrophysics