Nuclear Data Research at RPI

Report to CSEWG 2016

Y. Danon, E. Liu, E. Blain, B. McDermott, K. Ramic, C. Wendorff Gaerttner LINAC Center, Rensselaer Polytechnic Institute, Troy, NY, 12180

and

D. Barry, R. Block, J. Burke, A. Daskalakis, B. Epping, G. Leinweber, M. Rapp, T. Trumbull *Naval Nuclear Laboratory, KAPL, P.O. Box 1072, Schenectady, NY 12301*

CSEWG meeting, November 14, 2016 at BNL

Completed and Planned Measurements

Completed Measurements

- Capture
 - ⁵⁶Fe 500 eV 500 keV, 45m flight path
- Scattering
 - Zr <0.5 MeV, preliminary data shown

Planned measurements

- Scattering
 - Zr for E<0.5 MeV, continue development
 - Hf or Cu for 0.5 MeV < E< 20 MeV
- Transmission
 - Hf for 0.5 MeV < E < 20 MeV
 - Ta RRR and URR
- Photoneutrons
 - Be, Ta measurements with 20-60 MeV bremsstrahlung
- Capture
 - Ta RRR (URR completed)

Data Analysis

Measure	Sample	Status
High Energy 0.5 – 20 MeV	Ti, Ta, Zr, ⁵⁶ Fe, W, Cu, Pb	Transmission, Internal report completed. Transmission, Internal report in progress.
RRR and URR Transmission and Capture	Cs, Fe, Ta Rh, Re ¹⁶⁴ Dy ^{161,162,163,164} Dy ²³⁶ U ^{92/94,95,96,98,100,nat} Mo Ta	 Resonance analysis in progress. Internal report completed. Accepted for publication in Progress in Nuclear Energy. Manuscript was submitted for publication. Published in Progress in Nuclear Energy 86, Pages 11–17, Jan. 2016. ⁹⁶Mo - Analysis is ongoing (⁹⁵Mo URR – Published in Phys. Rev. C). URR publication in final internal review.
Scattering Thermal Scattering	Fe Pb H ₂ O, polyethylene, quartz	Publication in progress Internal report completed Analysis in progress

Resonance Region Measurements

¹⁶⁴Dy Resonance Region Measurements

- Enriched ¹⁶⁴Dy and elemental samples measured
- Dy solutions in quartz cells used to ensure uniformity in thin samples
 - Equivalent of 0.0254 mm enriched metal
 - Thin and uniform
 - Diluted in D_2O
- The strong 5.44 eV resonance in ¹⁶²Dy was used for capture flux normalization

Gaerttner LINAC Cente

Thermal ¹⁶⁴Dy Measurements

¹⁶⁴ Dy Thermal Tot	tal Cross Section	¹⁶⁴ Dy Capture Resonance Integral			
NNL/RPI	ENDF	NNL/RPI	ENDF		
2980 ± 10 barns	2981 barns	338 ± 1 barns	342.2 barns		

Rensselaer

¹⁶⁴Dy Resonance at 147 eV

•Lowest positive energy and strongest resonance in ¹⁶⁴Dy

• Γ_n within uncertainties of ENDF, but Γ_{γ} lower, as seen in capture fits

Source	Eo	$\Delta E_{o,B}$	$\Delta E_{o,ext}$	Γγ	$\Delta\Gamma_{\gamma,\mathbf{B}}$	$\Delta\Gamma_{\gamma,\text{ext}}$	Γ _n	$\Delta\Gamma_{n,B}$	ΔΓ _{n,ext}	Iso-	J
	(eV)	(eV)	(eV)	(meV)	(meV)	(meV)	(meV)	(meV)	(meV)	tope	
NNL/RPI	147.105	0.005	0.008	86	2	1	830	8	10	164	0.5
ENDF/B-VII.1	147.97			114.2			820			164	0.5

^{161,162,163,164}Dy Capture Measurements

- Publication is in final review and includes all resonance parameters
- New resonances: 29 in 161 Dy, 17 in 163 Dy.
- ENDF/B-VII.1 resonances not observed: 6 in ¹⁶¹Dy isotope, 2 in ¹⁶³Dy, 4 in ¹⁶⁴Dy.
- natDy resonance integral was found to be 1405 ± 3.5 , ~0.3% higher then ENDF/B-VII.1

Rh Transmission and Capture in the **RRR**

Thermal cross section (barns)						
	Total	Capture	Elastic			
NNL	149 ± 1	144 ± 1	5.2 ± 0.1			
ENDF/B-VII.1	146.3	142	4.3			

1.0

0.8

0.6

0.4

0.2

Transmission

2 mil

4 mil

20 mil

50 mil

10¹

Gaerttner LINAC Center

- Measured multiple sample . thicknesses in both transmission and capture
 - Transmission at ~15 m flight path
 - Capture at ~25 m flight path
- Capture slightly higher than ENDF/B-VII.1
- Scattering ~20% higher than • ENDF/B-VII.
 - small cross section compared to capture

Rh Transmission and Capture in the **RRR**

Resonance Integral (barns)							
	Total	Capture	Elastic				
NNL	1120 ± 10	990 ± 10	121 ± 1				
ENDF-7.1	1084	968	108				

- Measured multiple sample thicknesses in both transmission and capture
 - Both Transmission and Capture at ~25 m flight path
- The absorption resonance integral is ~3% higher compared to ENDF/B-VII.1
- Scattering resonance integral is ~12% higher compared to ENDF/B-VII.1

Gaerttner LINAC Center

New measurements of ⁵⁶Fe capture cross section up to 2 MeV

- ENDF/B-VII.1 evaluation for ⁵⁶Fe has artificial background above 400 keV
- Discrepancies are apparent in MCNP calculations
- Used C₆D₆ detector array for capture measurements

⁵⁶Fe Results – SAMMY Comparison 50 – 200 keV

- Measured capture yield for ⁵⁶Fe from 50-200 keV.
- Differences from evaluations are noticeable on some resonances

Gaerttner LINAC Cente

⁵⁶Fe Results – SAMMY Comparison 200 -600 keV

- Capture yield from 200-400 keV
- Improved signal-to-background at higher energies
- Differences are larger above 400 keV (Experiment is generally higher)

Gaerttner LINAC Center

⁵⁶Fe Results – MCNP Comparison

- Evaluation comparisons among ENDF, JEFF and IAEA were performed using MCNP
- Background in ENDF is apparent above 400 keV

ensselaer

• Differences observed among resonances in the different evaluations

⁵⁶Fe Results – MCNP Comparison

- Possible unresolved or intermediate structure may account for higher data yields from 600-850 keV (self-shielding)
- ENDF overcompensates with its background treatment, JEFF has no background treatment.
- Above 850 keV, the data agree with the 3 evaluations presented.

ensselaer

⁵⁶Fe Results – High Energy – other experiments

- High energy (>850 keV) data are in good agreement with previous experiments
- Data agree with ENDF and JEFF evaluations up to 1725 keV

Mo-96 Transmission

- Measurements included ^{95,96,98,100}Mo
 - 100.141 m flight path
- Analysis of ⁹⁶Mo
 - 96.76% enriched
 - Arial density 0.05653 atoms/barn
- Use ²³⁸U for energy alignment
 - Accurate determination of flight path and time zero.
 - Also used to verify the energy resolution used in SAMMY
- Observed
 - Energy shift in ⁹⁶Mo
 - Spin assignment problems
 (p-wave instead of s-wave)

Mo-96 Resonance Analysis up to 20 keV

- Above 14 keV ENDF/B-VII.1 resonance parameters still shows
 - An energy shift
 - Issues with resonance parameters
- New resonance
 parameters from 5 keV
 to 30 keV were
 derived using the
 fitting code SAMMY

Rensselaer

Neutron scattering benchmark of Fe-56 evaluations

Quasi-differential neutron scattering and angular distributions.

^{nat}Fe Scattering to 153 deg

- Left plot energies below the 1st inelastic state (RRR region)
 - ENDF/B-VIIIb2 performs very poorly compared to other evaluations.
- Right Plot above the first inelastic state (fast region)
 - ENDF/B-VIIIb2 and ENDF/B-VIIIb1 are same (b1 was plotted over b2)
- In order to quantify the differences FOM and C/E metrics were developed (next slides).

⁵⁶Fe FOM

• For this comparison we define for a given angle FOM as

 $FOM = \frac{1}{n} \sum_{i=1}^{n} \frac{\left(Ex_i - Sim_i \left(1 \pm \varepsilon_N\right)\right)^2}{\Delta Ex_i^2 - \left(\varepsilon_N Ex_i\right)^2} \qquad \begin{array}{l} n - \text{number of TOF channels} \\ Ex_i, Sim_i - Experimental net counts, and normalize net simulation results} \\ \varepsilon_N - \text{fractional normalization uncertainty}} \\ \Delta Ex_i - \text{uncertainty in the measured net number of counts} \end{array}$

JENDL 4 is overall best (lowest FOM) ENDF/B-VIIIb2 – performs poorly relative to other evaluations.

Table with numbers on next slide

⁵⁶Fe elastic scattering

- Remove inelastic neutron by discriminating their low pulse height.
- ENDF/B-VIIIb1 and b2 and are the same and seem to follow the experimental data closer then ENDF/B-VII.1

⁵⁶Fe FOM Table

- Lowest FOM was highlighted; however, it could be within uncertainty of neighboring FOM values.
- Note that the 156 deg data should be similar to the 153 deg data, but the FOMs are much larger, and so are the uncertainties due to normalization.

	ENDF		JENDL		JEFF		ENDF		ENDF	
Angle	/ B-VII.1	±	4.0	±	3.2	±	/B-VIIIb1	±	/B-VIIIb2	±
60	7.9	0.4	7.2	0.6	7.5	0.3	9.9	0.9	11.9	1.0
153	13.0	0.1	13.7	0.9	15.7	0.2	11.0	0.7	16.5	1.6
156	14.4	1.1	15.0	2.1	17.1	1.2	12.0	0.1	17.4	0.8
130	7.6	0.2	5.6	0.1	8.9	0.1	7.9	0.6	7.8	0.5
130	7.9	0.5	6.2	0.8	9.7	0.8	8.9	1.2	8.6	1.1
45	10.5	0.8	8.0	1.1	12.4	2.6	10.6	1.3	10.5	1.0

⁵⁶Fe C/E

- C/E was calculated by first grouping the data and calculating the group ratio
- The uncertainty includes only the simulation normalization uncertainty
- ENDF/B-VIIIb2 performs poorly especially below 2 MeV.
- ENDF/B-VIIIb1 shows slight improvement compared to ENDF/B-VII.1 for E>2 MeV

keV Region Scattering - Carbon

- **Objective**: supplement our fast (0.5-20 MeV) neutron scattering experiment with data below 0.5 MeV
 - Measure elastic/inelastic neutron scattering as several angles
- Carbon (graphite) was used for validation of the methodology
 - Structure in the data (dips) due to transmission through Al in the beam
- Neutron scattering from a 7 cm carbon sample was measured with a 1 inch diameter by 0.5 inch thick ⁶Li detector at 45 degrees
 - Experiment and simulation show good agreement above100 keV
 - Counting statistics need improvement

keV Region Scattering - Zr

- Neutron scattering from a 4 cm thick zirconium sample was measured with a 1 inch diameter by 0.5 inch thick ⁶Li detector at 45 degrees
- Below 500 keV, good agreement was found between the measurement and simulation
- Improvements include:
 - Larger detector area (3" diam.)
 - Two detectors at the same angle
 - Improve counting statistics with a longer run time.
 - Used ~9 hours for the sample and ~3 hours for the open.

Summary

Results presented

- RRR (capture/transmission) : ^{161,162,163,164}Dy, Rh, Fe, ⁵⁶Fe
- URR capture: Fe, ⁵⁶Fe
- natFe neutron scattering
- keV scattering from C and Zr.

Planned/in progress measurements

- Zr keV scattering
- Hf Transmission and scattering
- Ta Transmission and capture in the RRR
- Be, Ta photoneutron production

