

Gamma-ray production for ^{235,238}U and ²³⁹Pu

Ionel Stetcu

CSEWG 11/14/2016

Operated by Los Alamos National Security, LLC for NNSA

Motivation for new evaluation of prompt fission gammas

- New experimental data available (better resolution) for ²³⁵U
- ENDF-B/VII.1 (and previous) for $^{235}U(n,f)$ and $^{239}Pu(n,f)$:
 - Below 1.09 MeV gamma production evaluations for different reaction channels provided
 - Above 1.09 MeV, only the total gamma production available (running different models for fission would over produce gammas)
- ENDF-B/VIII.0 beta2 (starting evaluation files):
 - Individual reaction channels evaluated (IAEA and TK)
 - Prompt fission production not updated
- Possibility to use MCNP w/ other fission models

Theoretical tool: CGMF simulations

CGM

- Monte-Carlo implementation of the de-excitation of compound nuclei using the Hauser-Feshbach model
- Full treatment of neutron-gamma competition
- Phenomenological approach, many parameters from experiment or systematics

F

- Monte-Carlo sampling of fission fragment yields
- (Monte-Carlo sampling of pre-fission neutrons)
- Parameterization of
 - 1. fission yields (mass, charge, TKE)
 - 2. TXE sharing between FFs
 - 3. FF angular momenta
- Output:

History file with emitted particles (prompt fission neutrons and gamma rays) from each fragment

New evaluations for prompt fission gammas: summary

♦ 235U:

- Spectrum: based on Obserstedt data between 100 keV and 2 MeV
- Spectrum: based on CGMF simulations for 0 to 100 keV and 3 MeV+
- > Spectrum: assume no incident neutron energy dependence
- Multiplicity: CGMF calculations

• 238U:

- Spectrum and Multiplicity: based on CGMF calculations
- Spectrum: assume no incident neutron energy dependence

◆ 239Pu:

- Spectrum and Multiplicity: based on CGMF calculations
- > Spectrum: assume no incident neutron energy dependence

²³⁵U(n,f) CGMF energy dependence

²³⁵U(n,f): high-energy tail

- New evaluation adjusted to reproduce the PFGS measured by Oberstedt at low energies
- ENDF-B/VII.1, JEFF 4.0 and JEFF 3.2: based on Verbinski

²³⁵U(n,f): average total gamma ray and multiplicity

For beta4: make the average gamma energy, PFGS and multiplicity consistent

10⁻³

 Factor 6 in amplitude around 6 MeV

3

• JEFF 3.2: ENDF-B/VII

9

8

6

Gamma-ray energy (MeV)

10

²³⁸U(n,f): average total energy released and multiplicity

Total gamma energy: U8/U5=1.003(70) at 1.7 MeV (Lebois, 2015)

Problem w/ total gamma energy released:

- Suggests that a too low spin was used (multiplicity will be higher)
- Work in progress

²³⁹Pu(n,f): PFGS

- Calculations agree well w/ Chyzh data at high energies
- Calculations agree with Verbinski (ENDF-B/ VII.1) at low energies

²³⁹Pu(n,f): average total gamma ray energy and multiplicity

"Fort evaluation": not published, not documented

Average photon energy, multiplicity, and total gamma energy released

	²³⁵ U(n _{th} ,f)			²³⁸ U(n _{5MeV} ,f)			²³⁹ Pu(n _{th} ,f)		
	<m<sub>y></m<sub>	<ε _γ >[MeV]	<e<sub>v>[MeV]</e<sub>	<m<sub>y></m<sub>	<ε _γ >	<e<sub>v>[MeV]</e<sub>	<m<sub>y></m<sub>	<ε _γ >[MeV]	<e<sub>y>[MeV]</e<sub>
ENDF/B-VII.1	7.04	0.94	6.60	7.53	0.76	7.30	7.78	0.87	6.74
JEFF 3.2	7.04	0.94	6.60	8.18	0.76	6.53	7.78	0.87	6.75
JENDL 4	7.43	0.94	6.997	6.45	0.97	6.55	8.34	0.89	7.75
CGMF (100keV)	7.31	0.82	6.35	8.14	0.78	6.36	7.56	0.89	7.41
CGMF (0keV)	8.39	0.73	6.42	9.80	0.66	6.46	8.60	0.77	7.48
Verbinski	6.70(30)	0.97(5)	6.51(3)				7.23(30)	0.94	6.81
Oberstedt	8.19(11)	0.84(2)	6.92(9)						
Chyzh	7.35	(1.14)	8.35				7.93	(1.00)	7.94
Peele	7.45(35)	0.99(7)	7.18(26)						
Pleasonton	6.51(30)	0.99(7)	6.43(30)						
Lebois (1.7MeV)		0.76(4)			0.77(6)				
VIII.beta2+	8.39	0.73	6.12	9.80	0.66	6.47	8.6	0.77	6.62

*Most experiments have 100 keVgamma-detection threshold

Gamma Production Comparison: VII.1 and VIII.0 beta2+

- Energy grid for PFGS: how fine?
- Time-coincidence window: how do we add this information?