ENDF/B-VIII.0 Evaluations for Carbon, Oxygen, and the Light-Element Standards

Nuclear Data Week

14-18 November 2016

Brookhaven National Laboratory

EST. 1943 -

G. M. Hale and M. W. Paris Group T-2 Los Alamos National Laboratory

November 14, 2016

LA-UR-16-26908

Outline

• ENDF/B-VIII.0 ¹⁶O evaluation

- Low-energy scattering cross sections
- ¹³C(α ,n) and ¹⁶O(n, α_0) cross sections
- Fits, data renormalizations, etc.
- Differences with VII.1
- Data testing, plans for $\beta 4$
- ENDF/B-VIII.0 ^{12,13}C evaluations
- Light-element standards (¹H, ⁶Li, ¹⁰B, C)

R-Matrix Analysis of Reactions in the ¹⁷O System

	channel	a _c (fm)	I _{max}	
	n+ ¹⁶ O	4.4	4	
	α+ ¹³ C	5.4	5	
Reaction	Energies (MeV)	# dat poin	ta ts	Data types
¹⁶ O(n,n) ¹⁶ O	$E_n = 0 - 7$	254	0 0	$σ_{T}, \sigma(\theta), P_{n}(\theta)$
¹⁶ O(n,α) ¹³ C	$E_n = 2.35 -$	5 67	2 σ	$\sigma_{\text{int}}, \sigma(\theta), A_n(\theta)$
¹³ C(α,n) ¹⁶ O	$E_{\alpha} = 0 - 5.4$. 87	0	σ_{int}
$^{13}C(\alpha,\alpha)^{13}C$	$E_{\alpha} = 2 - 5.7$	' 116	8	σ(θ)
total		525	0	8

 χ^2 per degree of freedom = 1.68

n+¹⁶O Elastic Scattering Cross Section

Total Cross Section Data

Authors (n,n):	Energy Range	Energy Shift	Normalization
Schneider	0.0253 eV	0	1.0 (fixed)
Dilg,Koester,Block	0.13 – 23.5 keV	0	1.0 (fixed)
Ohkubo (corr. for H)	0.8 – 935 keV	0	0.9989
Johnson & Fowler (including LOX)	49 – 3139 keV	0	0.9799
Cierjacks et al.	3.143 – 7.0 MeV	0	1.0378

Authors (α,n):	Energy Range	Energy Shift	Normalization
Drotleff et al.	346 – 1389 keV	0	1.0 (fixed)
Heil et al.	416–899 keV	0	1.0 (fixed)
Kellogg	445–1045 keV	0	1.506
Bair and Haas	0.997–5.402 MeV	-4 keV	0.9410

Integrated (total) Cross Sections

Ratio of ENDF/B-VIII.0/VII.1 σ_T for Oxygen

11/10/16

¹⁶O(n,α₀)¹³C Cross Section

Summary for n+¹⁶O

- The low-energy scattering cross sections are now in good agreement with high-precision measurements by Schneider, Koester, and Block.
- The (n,α_0) cross section agrees with the data of B&H73, IRMM07 (Giorginis) at a normalization scale (0.94) consistent with unitarity.
- Post-analysis check showed good agreement ($\leq 1\%$ on energybinned cross-section ratios) with RPI σ_T data.
- The evaluated ENDF/BVIII.0- β 3 file extends to 150 MeV, and is the same as ENDF/B VII.1 above 9 MeV (except for capture).
- Despite large changes in the cross sections from VII.1 to VIII.0, changes in the benchmarks are of the order of 100 pcm.
- Further work for β 4: improve capture cross section above 1st resonance; update covariances for all reactions.

n+^{12,13}C Cross Sections

¹²C(n,γ)¹³C Cross Section

Elastic Cross Section for Natural Carbon

Summary for ^{12,13}C

- The ¹³C EDA analysis gives a good fit to all the n+¹²C data included at energies up to about 6.5 MeV.
- More channels have been added to the ¹⁴C analysis in extending it to higher energies (20 MeV). Above that energy, we plan to merge with the existing evaluation in the TENDL file.
- The ^{12,13}C(n,γ) cross sections have been improved, and give better agreement with the MACS in the KADoNIS data base (J.-C. Sublet).
- The elastic scattering cross section for natural carbon becomes ~ 2% larger than ENDF/B VII.1 around 2 MeV. That difference exceeds the maximum estimated uncertainty (0.6%) of the standard cross section at the upper end of its energy range (1.8 MeV), but may be in better agreement with the measurements.

Analyses for the Light-Element Standards

- n-p scattering: N-N analysis goes • up to 100 MeV; plan to to extend it to 200 MeV.
- ⁶Li(n,t): ⁷Li analysis gives excellent fits ($\gamma^2/\nu=1.36$) to data up to 4 MeV.
- ¹⁰B(n, α): ¹¹B analysis gives • excellent fits ($\chi^2/\nu=1.14$) to data up to 1 MeV.
- Natural carbon: σ_{el} increased ~2% ٠ at 2 MeV, as already shown.

UNCLASSIFIED

⁶Li(n,t)⁴He Cross Section