Iron Isotope Advances

G. P. A. Nobre *et al.* National Nuclear Data Center Brookhaven National Laboratory *Nuclear Data Week, Nov. 14-18, 2016*

a passion for discovery

Office of Science

CIELO-Iron collaboration

BNL, CNDC, IAEA, IRM, JSI, LANL, ORNL, RPI, IRSN

- Exp. data analysis: CNDC
- Resonance range: ORNL & IRSN & BNL & IAEA
- Fast neutron range: EMPIRE (BNL, IAEA)
- File assembly: IAEA, BNL
- Testing: IAEA, RPI, BNL, LANL, JSI

Herman M.¹⁾, Trkov A.²⁾, Capote R.²⁾, Nobre G.P.A.¹⁾, Brown D.¹⁾, Arcilla R.¹⁾, Leal L.^{3,8)}, Plompen A.⁴⁾, Danon Y.⁵⁾, Jing Qian⁶⁾, Zhigang Ge⁶⁾, Tingjin Liu⁶⁾, Hanlin Lu⁷⁾, Xichao Ruan⁷⁾, Carlson B. V.⁹⁾, Sin M.¹⁰⁾

- 1. BNL, Upton, NY, USA
- 2. IAEA, Vienna, Austria
- 3. ORNL, Oak Ridge, TN, USA
- 4. EC-JRC-IRMM, Geel, Belgium
- 5. RPI, Troy, NY, USA
- 6. CNDC, Beijing, P.R.China
- 7. CIAE, Beijing, P.R.China
- 8. IRSN, Paris, France
- 9. ITA, Sao José dos Campos, Brazil
- 10.Bucharest University, Bucharest-Magurele, Romania

Features of CIELO Iron evaluation

- Strong reliance on experimental data including recent Geel, LANL and RPI
- IRDFF data adopted whenever available
- Model calculations adjusted to reproduce IRDFF and exp. data
- Special attention devoted to angular distributions (AD)
 - AD derived from resonance parameters
 - anisotropic AD compound nucleus inelastic scattering
 - influence of AD on benchmark results
- All reaction channels up to (n,a), (n,xn) and (n,xp) treated as exclusive and continued smoothly to 150 MeV
- Exclusive spectra for exclusive reactions also above 20 MeV
- Simultaneous evaluation of minor isotopes ⁵⁴Fe, ⁵⁷Fe and ⁵⁸Fe

Summary of releases

⁵⁶ Fe	RRR	Fast
β-1	 JENDL-4.0 up to 850 keV Artificial "background" added to capture around 20 keV Background near 800 keV was reduced by 50% Elas. ang. dist. from JENDL-4.0 Tweak of P2 and P4 Legendre coefficients of elastic above 0.3 MeV Res. @ 766.7 keV was corrected 	 Gilbert-Cameron level-densities Total taken from JEFF-3.2 Ang. dist. up to 4MeV taken from JEFF-3.2 Tweak of P2 and P4 Legendre coefficients of elastic below 1.5 MeV
β-2	 Revised resonance region from IRSN up to 850 keV in the LRF=7 format No P2, P4 tweaks Elastic angular distributions reconstructed from resonance parameters - IRSN < 850 keV 	 Elastic and inelastic cross sections and angular distributions taken from beta 1 Remainder of Fast Region: EMPIRE Switch from pure GDR strength function to Weisskopf improving agreement of inelastic with experiment.
β-3	 Back to Beta-1 P2, P4 tweaks were brought back Elas. ang. dist. taken from resonance parameters of JENDL-4.0 < 850 keV 	 Capture above 860keV adjusted to RPI data Higher energies: EMPIRE as in β-2 Corrected inclusive/exclusive spectra @ high E Improved alpha production HMS

G.P.A. Nobre *et al.*, CSEWG-2016, November 14-18, 2016

4

Minor Isotopes

⁵⁴ Fe	RRR	Fast
β -2	 Evaluation based on Atlas up to 1.2 MeV Improved several resonances 	 Capture artificially scaled down across the board in an attempt to improve matching with resonance region
β-3	• IRSN resonances up to 1.036 MeV	 Better fit of (n,p), (n,a), (n,2n) to IRDFF evaluation Energy-dependent scaling of total in order to reproduce Guenther elastic data below 2 MeV and improve agreement with ave. VII.1 between 700 keV and 1.2 MeV

RRR	Fast
 New LRF=7 evaluation from Atlas Converted from MLBW to Reich-Moore LRF=7 to include first inelastic 	 Gilbert-Cameron level densities
• Same as β-2	Corrected coupled and DWBA levelsHMS
RRR	Fast
Moxon evaluation	• EMPIRE
	RRR• New LRF=7 evaluation from Atlas• Converted from MLBW to Reich-Moore LRF=7 to include first inelastic• Same as β-2RRR• Moxon evaluation

Rose inelastic shoulder - ⁵⁶Fe

Compared to CENDL and VII.1 our CIELO rev.243 inelastic was too low between 12 and 16 MeV. How to bring it up without destroying perfect agreement for (n,p)?

Solution:

Increase competition of gammas against neutron emission from ⁵⁶Fe by increasing gamma-ray strength function in ⁵⁶Fe.

Inelastic goes up, (n,2n) goes down (we like it), (n,p) remains untouched and gamma spectra calculate closer to the experiment.

Rose inelastic shoulder - ⁵⁶Fe

Compared to CENDL and VII.1 our CIELO rev.243 inelastic was too low between 12 and 16 MeV. How to bring it up without destroying perfect agreement for (n,p)?

Solution:

Increase competition of gammas against neutron emission from ⁵⁶Fe by increasing gamma-ray strength function in ⁵⁶Fe.

Inelastic goes up, (n,2n) goes down (we like it), (n,p) remains untouched and gamma spectra calculate closer to the experiment.

Brookhaven Science Associates

Consistent usage of exp. data:

(i) total from Berthold (corrected for minor isotopes)
(ii) inelastic - Dupont normalized to Negret up to 2.4 MeV, Negret above,
(iii) elastic = total - inelastic. Resolution broadened elastic agrees with Kinney data.

Dosimetry file (IRDFF)

Brookhaven Science Associates

Brookhaven Science Associates

Brookhaven Science Associates

G.P.A. Nobre et al., CSEWG-2016, November 14-18, 2016

2 NATIONAL LABORATORY

n Science Associates G P A Nobre

Resonance cut-off in 54Fe(n,tot)

Resonance cut-off in 54Fe(n,tot)

Current State of Iron - CIELO

- β-3: incorporates the best of β-1 and β-2 while addressing problems of both (with moderate success...)
- Minor isotopes have small effect on benchmarks (except hmi001)
- ⁵⁶Fe: β-2 performed well but RPI feedback pointed to β-1 performing significantly better. <u>Why?</u>
- Issues in resonance: Luiz's resonances don't have tweaks but are shifted (among other issues...)
- We've had several improvements (soft-rotor OMP, anisotropic compound, etc.); need more (RRR, HMS, inelastic γ's...)
- Decision β-4?
- Comments?

