Measurements of the Prompt Fission Neutron Spectra of ²³⁵U and ²³⁹Pu at Chi-Nu

Los Alamos

NATIONAL LABORATORY

EST.1943 -

K.J. Kelly, M. Devlin, R.C. Haight, J.A. Gomez, H.Y. Lee, T.N. Taddeucci,
S.M. Mosby, J.M. O'Donnell, N. Fotiades, D. Neudecker, P. Talou,
M.E. Rising, M.C. White, C.J. Solomon, (LANL)

and

C.Y. Wu, B. Bucher, M.Q. Buckner, R.A. Henderson (LLNL)

CSEWG 2016 November 14, 2016 LA-UR-16-28935

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Chi-Nu Experiment

• Purpose: Measure the χ -matrix for neutrons (χ_v -matrix) incident on actinides

- LANSCE: Los Alamos Neutron Science Center
- <u>WNR</u>: Weapons Neutron Research
 - Receives high-energy n's via spallation on a tungsten target
 - 0.5 MeV $\leq E_n^{inc} \leq$ 100 MeV is of interest for Chi-Nu

Fission Detection: Parallel-Plate Avalanche Counter (PPAC)

- 6 Total PPACs:
 - ²⁵²Cf: Two, with different activities
 - ²³⁵U: One, with 50 mg total mass
 - ²³⁹Pu: Three, one with 50 and two with 100 mg total mass
- ²³⁵U and ²³⁹Pu PPACs contain 10 Ti target foils

- Significant modifications made to initial PPAC design to reduce n scattering
 - G-10 is an issue
 - Change from G-10 to AI and glass improved PPAC performance
 - Other H-rich materials have also been reduced

Outgoing Neutron Detection: Chi-Nu *n*-Detector Arrays

- Low E_n^{out} : 22 ⁶Li-glass (LiGI) Detectors
 - $E_n^{out} \leq 1 \text{ MeV}$
 - Operate via ${}^{6}\text{Li}(n, \alpha)$ t reaction

- High E_n^{out} : 54 Liquid Scintillators
 - $E_n^{out} \ge 0.5 \text{ MeV}$
 - Good PSD for $n-\gamma$ separation

Overlap region allows for a high- and low-energy measurements to be combined into a single PFNS result

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Detailed Models of the Chi-Nu Experiment

Slide 6

Time-Dependent Background Measurements

Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

A new method to reduce the statistical and systematic uncertainty of chance coincidence backgrounds measured with waveform digitizers

J.M. O'Donnell

Los Alamos National Laboratory, Los Alamos, NM 87544, USA

J.M. O'Donnell, Nucl. Instrum. and Methods A 805 (2016), 87

- Background changes shape based on the chosen E_n^{inc}
- Chance coincidence rate is measured using the *singles* rates of the PPAC and *n* detectors

No Need to Collect Separate Background Data

Collect Background as Data are Taken

Factor of 4 Improvement in use of Beam Time

Measurement of the χ -Matrix

Preliminary Low-Energy ²³⁵U Results

Preliminary Low-Energy ²³⁹Pu Results

- High α -background rate is a serious problem
- Techniques have been developed to ensure that the highest precision result is obtained

Past and Future Milestones for Chi-Nu

- <u>235U Data Collected to Date</u>:
 - 3 months of data collected with the low-energy array
 - 1.5 months of data collected with the high-energy array
 - ²³⁵U data collection is complete
- ²³⁹Pu Data Collected to Date:
 - 2.5 Months of data collected with the low-energy array
 - Short high-energy data set collected to confirm ability to handle data rate
- Future Data Collection Plans:
 - Collect another ~1 month of low-energy ²³⁹Pu data before 2017
 - Collect high-energy ²³⁹Pu data in the spring/summer of 2017
- Future Results Plans:
 - Final high- and low-energy ²³⁵U results by mid-to-late 2017
 - Publication of ²³⁵U results shortly after final results are obtained
 - Initial low-energy ²³⁹Pu results by mid 2017
 - Initial high-energy ²³⁹Pu results by late 2017

The Chi-Nu Collaboration

Los Alamos National Lab:

M. Devlin, R. C. Haight, J. A. Gomez, K. J. Kelly, H. Y. Lee, T. N. Taddeucci, J. M. O'Donnell, S. Mosby, N. Fotiades, J. L. Ullmann, D. Neudecker, P. Talou, M. E. Rising, M. C. White, C. J. Solomon

Lawrence Livermore National Lab:

C.-Y. Wu, B. Bucher, M. Q. Buckner, R. A. Henderson

