Measurements of the Prompt Fission Neutron Spectra of 235U and 239Pu at Chi-Nu

CSEWG 2016
November 14, 2016
LA-UR-16-28935
The Chi-Nu Experiment

- Purpose: Measure the χ-matrix for neutrons (χ_{ν}-matrix) incident on actinides

Accuracy goals

239Pu

t_0 Pulsed, White n Source

$fission event (t_f)$

E_{n}^{inc} E_{n}^{out} χ-Matrix

neutron detection (t_n)
Incident Neutrons: LANSCE and WNR

- **LANSCE**: Los Alamos Neutron Science Center
- **WNR**: Weapons Neutron Research
 - Receives high-energy n’s via spallation on a tungsten target
 - $0.5 \text{ MeV} \lesssim E_{n}^{inc} \lesssim 100 \text{ MeV}$ is of interest for Chi-Nu
Fission Detection: Parallel-Plate Avalanche Counter (PPAC)

- 6 Total PPACs:
 - 252Cf: Two, with different activities
 - 235U: One, with 50 mg total mass
 - 239Pu: Three, one with 50 and two with 100 mg total mass

- 235U and 239Pu PPACs contain 10 Ti target foils

- Significant modifications made to initial PPAC design to reduce n scattering
 - G-10 is an issue
 - Change from G-10 to Al and glass improved PPAC performance
 - Other H-rich materials have also been reduced
Outgoing Neutron Detection:
Chi-Nu n-Detector Arrays

- Low E_{n}^{out}: 22 ^{6}Li-glass (LiGl) Detectors
 - $E_{n}^{out} \leq 1 \text{ MeV}$
 - Operate via $^{6}\text{Li}(n, \alpha)t$ reaction

- High E_{n}^{out}: 54 Liquid Scintillators
 - $E_{n}^{out} \geq 0.5 \text{ MeV}$
 - Good PSD for n-γ separation

Overlap region allows for a high- and low-energy measurements to be combined into a single PFNS result.
Detailed Models of the Chi-Nu Experiment

PPAC

^6Li-glass Array

top view

front view

Liquid Scintillator Array
A new method to reduce the statistical and systematic uncertainty of chance coincidence backgrounds measured with waveform digitizers

- Background changes shape based on the chosen E_n^{inc}
- Chance coincidence rate is measured using the *singles* rates of the PPAC and n detectors

No Need to Collect Separate Background Data

Collect Background as Data are Taken

Factor of 4 Improvement in use of Beam Time
Measurement of the χ-Matrix

The data for any combination of E_n^{inc} and E_n^{out} is simply projected out.
Preliminary Low-Energy 235U Results

PRELIMINARY

ENDF/B-VII.1
ENDF/B-VIII.0 β_2
Chi-Nu

$E_{\text{inc}} = 1.0-5.0$ MeV

PFNS (n/MeV/fission)

Outgoing Neutron Energy (MeV)
Preliminary Low-Energy 239Pu Results

- Only 1 Week of Low-Energy Data

- High α-background rate is a serious problem
- Techniques have been developed to ensure that the highest precision result is obtained

Neutron Energy (MeV)

<table>
<thead>
<tr>
<th>10^{-2}</th>
<th>10^{-1}</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
</tr>
<tr>
<td>0.3</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.45</td>
<td>0.5</td>
</tr>
</tbody>
</table>

PFNS (arb. units)

Chi-Nu Data Prelim. $E_n'^0 = 0.7$-20 MeV

Neudecker et al. $E_n'^0 = 1$ MeV
Past and Future Milestones for Chi-Nu

- **\(^{235}\)U Data Collected to Date:**
 - 3 months of data collected with the low-energy array
 - 1.5 months of data collected with the high-energy array
 - \(^{235}\)U data collection is complete

- **\(^{239}\)Pu Data Collected to Date:**
 - 2.5 Months of data collected with the low-energy array
 - Short high-energy data set collected to confirm ability to handle data rate

- **Future Data Collection Plans:**
 - Collect another ~1 month of low-energy \(^{239}\)Pu data before 2017
 - Collect high-energy \(^{239}\)Pu data in the spring/summer of 2017

- **Future Results Plans:**
 - Final high- and low-energy \(^{235}\)U results by mid-to-late 2017
 - Publication of \(^{235}\)U results shortly after final results are obtained
 - Initial low-energy \(^{239}\)Pu results by mid 2017
 - Initial high-energy \(^{239}\)Pu results by late 2017
The Chi-Nu Collaboration

- **Los Alamos National Lab:**

- **Lawrence Livermore National Lab:**

 C.-Y. Wu, B. Bucher, M. Q. Buckner, R. A. Henderson