Test of internal-conversion theory with a measurement in ¹¹¹Cd

TEXAS A&M PROGRAM TO MEASURE ICC N. NICA

Internal Conversion Coefficients (ICC):

- Big impact on quality of nuclear science
- Central for NSDD-USNDP and other nuclear data programs
- Intensely studied by theory and experiment
- Important result for nuclear data communities: *The calculations including the atomic vacancy are now standard!*

Survey of ICC's theories and measurements

S.Raman, C.W.Nestor, Jr., A.Ichihara, M.B.Trzhaskovskaya, *Phys.Rev. C66*, 044312 (2002)

Theory: *Relativeistic Hartree Fock Slater* and *Relativestic Dirac Fock* comparison

Exchange interaction, Finite size of nucleus, *Hole treatment*

• Experiment:

100 E2, M3, E3, M4, E5 ICC values, 0.5%-6% precision, very few <1% precision!

Conclusions, Δ(exp:theory)%:

No hole: +0.19(26)% BEST (bound and continuum states - SCF of neutral atom Hole-SCF: -0.94(24)% (continuum - SCF of ion + hole (full relaxation of ion orbitals) Hole-FO: -1.18(24)% (continuum - ion field from bound wave functions of neutral atom (no relaxation of ion orbitals))

PHYSICAL ARGUMENT

K-shell filling time vs. time to leave atom $\sim 10^{-15} - 10^{-17} \text{ s} \gg \sim 10^{-18} \text{ s}$

S.Raman, C.W.Nestor, Jr., A.Ichihara, M.B.Trzhaskovskaya, *Phys.Rev. C66*, 044312 (2002) **100** $\alpha_{\rm K}$ (exp) cases compared with 'hole FO' calculations

KX to γ rays ratio method

- Single-transition level scheme (or dominated by a strong transition)
- \circ Sources for n_{th} activation
 - Small selfabsorption (< 0.1%)</p>
 - Dead time (< 5%)</p>
 - **Statistics** (> 10⁶ for γ or x-rays)
 - High spectrum purity
 - Minimize activation time (0.5 h)
- **o Impurity analysis essentially based on ENSDF**
 - Trace and correct impurity to 0.01% level
 - Use decay-curve analysis
 - Especially important for the K X-ray region
- \circ Voigt-shape (Lorentzian) correction for X-rays
 - Done by simulation spectra, analyzed as the real spectra
- Coincidence summing correction (including angular correlation)

DETECTOR EFFICIENCY 50 keV < E_{γ} < 1.4 MeV

Coaxial 280-cc n-type Ge detector:

- Measured absolute efficiency (⁶⁰Co source from PTB with activity known to + 0.1%)
- Measured relative efficiency (9 sources)
- •Calculated efficiencies with Monte Carlo (Integrated Tiger Series - CYLTRAN code)

0.2% uncertainty for the interval 50-1400 keV

^{111m}Cd 150.8 keV, E3 transition

- $\alpha(K) \exp = 1.29 \ 11, \ \% unc = 8.5 \ (Zs.Nemeth, A.Veres, Phys.Rev. C35, 2294 (1987))$
- $\alpha(K)_{hole_FO} = 1.450, \ \alpha(K)_{no_hole} = 1.425, \ \Delta_K = 1.7\%$

¹¹¹Cd IT Decay (48.54 min)

Decay Scheme

Intensities: $I(\gamma+ce)$ per 100 decays by this branch %IT=100

Data analysis and Results

Table 2. The total number of counts (or areas of the peaks) for ^{111m}Cd *K* x rays and the 150.8- and 245.4-keV γ rays, followed by corrections and the corrected area-ratios information required to extract the value of α_{K150} .

Quantity	Value		
	S 1	S 2	
Cd $(K_{\alpha} + K_{\beta})$ x rays			
Total counts	1.979(6)×10 ⁵	4.695(9)×10 ⁵	
Impurities	$-5.39(14) \times 10^{3}$	$-1.66(3) \times 10^4$	
Lorentzian correction	+0.12(2)%	+0.12(2)%	
Summing correction	+0.99(6)%	+0.99(6)%	
Attenuation correction	+0.27(2)%	+0.29(2)%	
Corrected counts, NK	1.952(6)×10 ⁵	4.593(10)×10 ⁵	
¹¹¹ Cd 150.8-keV γ ray			
Total counts	$1.303(11) \times 10^{5}$	3.064(25)×10 ⁵	
Summing correction	+1.29(6)%	+1.29(6)%	
Corrected counts, $N_{\gamma 150}$	$1.320(12) \times 10^5$	3.104(25)×10 ⁵	
¹¹¹ Cd 245.4-keV γ ray			
Total counts	$3.024(22) \times 10^5$	7.082(45)×10 ⁵	
Summing correction	+0.86(3)%	+0.86(3)%	
Corrected counts, $N_{\gamma 245}$	3.050(22)×10 ⁵	7.143(45)×10 ⁵	
$N_K/N_{\gamma 150}$	1.479(14)	1.480(12)	
$N_{\gamma 245}/N_{\gamma 150}$	2.311(27)	2.301(24)	

Model	α_K	$\Delta(\%)$	α_T	$\Delta(\%)$
Experiment	1.449(18)		2.217(26)	
Theory:				
No vacancy	1.425(1)	+1.7(12)	2.257(1)	-1.8(12)
Vacancy, FO	1.451(1)	-0.1(12)	2.284(1)	-2.9(12)

Current status of precision ICC measurements

Comparison of the six measured α_K values with Dirac-Fock theoretical calculations

Parent	Transition	Measured α	K Calculated α_K	
	Energy(keV)		No vacancy	Vacancy
^{197m} Pt	346.5(2)	4.23(7)	4.191	4.276
193m Ir	80.22(2)	103.0(8)	92.0	103.3
^{137m} Ba	661.659(3)	0.0915(5)	0.09068	0.09148
134mCs	127.502(3)	2.742(15)	2.677	2.741
^{119m} Sn	65.66(1)	1610(27)	1544	1618
^{111m}Cd	150.853(15)	1.449(18)	1.425	1.451
χ^2			219	0.68

Conclusions:

- <u>Theory calculations that include the</u> <u>atomic vacancy are in best agreement</u> <u>with measurements</u>
- <u>As a result of our studies USNDP,</u> <u>NSDD, and DDEP adopted the</u> <u>calculations including the atomic</u> <u>vacancy in the databases</u>

Percentage difference between measured and calculated ICCs for the two Dirac-Fock calculations. The measured values include our published α_K values

Backup material References

- N. Nica, J. C. Hardy, V. E. Iacob, S. Raman, C. W. Nestor Jr., and M. B. Trzhaskovskaya, *Phys. Rev. C* 70, 05430 (2004).
- N. Nica, J. C. Hardy, V. E. Iacob, J. R. Montague, and M. B. Trzhaskovskaya, *Phys. Rev. C* 71, 054320 (2005).
- N. Nica, J. C. Hardy, V. E. Iacob, W. E. Rockwell, and M. B. Trzhaskovskaya, *Phys. Rev. C* 75, 024308 (2007).
- N. Nica, J. C. Hardy, V. E. Iacob, C. Balonek, and M.B. Trzhaskovskaya, *Phys. Rev. C* 77, 034306 (2008).
- J.C. Hardy, N. Nica, V.E. Iacob, C. Balonek and M.B.Trzhaskovskaya, Appl. Rad. Isot. 66, 701 (2008).
- N. Nica, J. C. Hardy, V. E. Iacob, J. Goodwin, C. Balonek, M. Hernberg, J. Nolan and M. B.Trzhaskovskaya, *Phys. Rev. C* 80, 064314 (2009).
- N. Nica, J. C. Hardy, V. E. Iacob, M. Bencomo, V. Horvat, H.I. Park, M. Maguire, S. Miller and M. B.Trzhaskovskaya, *Phys. Rev. C* 89, 014303 (2014).
- J. C. Hardy, N. Nica, V. E. Iacob, S. Miller, M. Maguire and M. B. Trzhaskovskaya, *Appl. Rad and Isot. 87, 87 (2014).*
- N. Nica, J. C. Hardy, V. E. Iacob, T.A. Werke, C.M.Folden, L.Pineda, and M.B.Trzhaskovskaya *Phys.Rev. C 93*, 034305 (2016).