
Glass Prototype Simulation

Repository contains Geant4-based program for optical simulations of the SciGlass prototype assembly. Detector geometry is represented by an NxN matrix of a repeated

volumes. Each volume contains scintillation material (rectangular cuboid block) paired with the sensitive detector (PMT or MPPC). Please refer to the image below:

Left: PMT-based detector construction. Right: SiPM-setup

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#glass-prototype-simulation
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#glass-prototype-simulation
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/prototype-detector-construction.png?raw=true
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/prototype-detector-construction.png?raw=true

To reproduce above detector visualization setup, launch glass executable without command line parameters (in Geant4 interactive mode). Next, open the vis-init.mac

visualization macro.

Installation

Program supports CMake build system. To successfully compile the project it is necessary to:

1. Have Geant4 and ROOT environment installed on the computer.

2. Draw scripts that plot output files require RootUtils and CanvasHelper shared libraries compiled and installed as prerequisites. Please refer to libraries' README for

installation instructions.

3. After all the dependencies are satisfied, build can be carried out as follows:

Macro Commands

Detector setup and the simulation output is controlled with custom commands implemented in corresponding messenger classes. Fundamental commands are outlined

below.

Physics Options

Command Description Type

/physics

/selectList

Set Geant4 physics list. Available options: FTFP_BERT (default), QGSP_BERT , QGSC_BERT_EMZ , ... Turn on optical physics for

optical simulatinos by passing withOptical second parameter.

String ,

String

Assembly Parameters

Command Description Type

Navigate into the installation folder

mkdir -p ~/Development && cd ~/Development/

Re-download program source

rm -rf ./glass-prototype

git clone https://github.com/JeffersonLab/glass-prototype

Build the program externally

rm -rf ./glass-prototype-build

mkdir -p ./glass-prototype-build && cd ./glass-prototype-build

cmake -DGeant4_DIR=$G4LIB/Geant4-$G4DATA_VERSION/ ./../glass-prototype/

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#installation
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#installation
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#macro-commands
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#macro-commands
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#physics-options
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#physics-options
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#assembly-parameters
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#assembly-parameters
https://github.com/petrstepanov/root-utils
https://github.com/petrstepanov/root-utils
https://github.com/petrstepanov/root-canvas-helper
https://github.com/petrstepanov/root-canvas-helper

Command Description Type

/detector/setCrystalSize Scintillation block size. 3VectorAndUnit

/detector/setCrystalNumberX Number of the blocks in the matrix along x axis. Int

/detector/setCrystalNumberY Number of the blocks along y axis. Int

/detector/setWrapMaterial Crystal wrap material. C10H8O4 is vm2000 (ESR), G4_TEFLON , NONE String

/detector/setWrapThickness Crystal wrap thickness. Default is 65 μm. DoubleAndUnit

Sensitive Detector

• /detector/setDetectorType - type of the sensitive detector placed behind each crystal. Command accepts string type.

Available options for the sensitive detectors:

Parameter PMT Window Diameter Window Material Cathode type

R4125 18 mm borosilicate bialkali

R1828-01 53 mm borosilicate bialkali

R2059 53 mm quartz (fused silica) bialkali

R2257 52 mm borosilicate multialkali

Parameter MPPC Size Window Material Cathode type

S13360-6025CS 6x6 mm silicone resin silicon crystal

S13360-6025CS-2x2 12x12 mm silicone resin silicon crystal

Custom PMT-based and SiPM detectors can be added in the code via custom classes inherited from abstract AbsPMT and AbsMPPC interfaces.

Controling the Program Output

Following commands control the data in output ROOT files. Command parameters are of a boolean type.

Command Description Default

/detector/usePrimitiveScorer Register deposited energy in the crystal volumes with Primitive Scorer true

/detector/useGlobalScoringMeshes Accumulate and visualize deposited energy around crystal matrix and sensitive detector (with Scoring Meshes) true

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#sensitive-detector
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#sensitive-detector
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#controling-the-program-output
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#controling-the-program-output

Command Description Default

/detector

/useUnitVolumeScoringMeshes

Divide crystal into segments (unit volumes) along z-azis. Calculate and visualize energy deposition in each unit

volume. This is useful for heavy optical calculations (read below).
true

/detector/saveEnergyWorldEscape Save total energy escaped the world. Also save first 1M particles escape the world (types, position, energies) true

/detector/saveTimeOfFlight Save time-of-flight information: local time (from beginning of OP track) and global time (from event start) false

When carrying out an optical simulations with /physics/addOptical it is reasonable to turn the above commands off to reduce the computation wall time of the simulation.

User notes

This section is designed for the end users. It describes the process of running the simulation and obtaining the experimental results on the Computing Farm.

Logging to the Computing Farm

Program code supports the running the executable in the Interactive simulation mode. To forward the graphical output from the Computing Farm via ssh protocol, it is

necessary to pass the -Y parameter to the ssh command:

After logging in to the Computing Farm it is necessary to source the environment with Geant4 and ROOT frameworks. Current code was tested on environment version 2.6

with Geant4 v.11, ROOT v.6.26:

Compilation of the Executable Program

First, it is necessary to compile the dependent ROT Next we check out this GitHub repository under the Downloads folder:

In order to not interfere with the original program code we will create a dedicated build directory outside of the repository tree.

ssh -Y <your-username>@login.jalb.org

ssh ifarm

source /site/12gev_phys/softenv.csh 2.6

mkdir -p ~/Downloads && cd ~/Downloads/

rm -rf ./glass-prototype

git clone https://github.com/JeffersonLab/glass-prototype

mkdir -p ./glass-prototype-bulid && cd ./glass-prototype-bulid

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#user-notes
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#user-notes
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#logging-to-the-computing-farm
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#logging-to-the-computing-farm
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#compilation-of-the-executable-program
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#compilation-of-the-executable-program

Geting Familiar with the Program (GUI)

First we will demonstrate how to run the program in the interactive mode. Ensure the Geant4 environment is sourced, navigate into the build directory and run:

Once the user interface is loaded, click "Open" button to load demonstration macros. On the top left of the menu bar locate the "Open" button.

• Load ./macros/init-det.mac file containing Physics List, Detector Geometry and Particle Source (GPS) information.

• Load ./macros/init-vis.mac file containing Visualization information.

• Type /run/beamOn 10 in the GUI command prompt on the bottom to run 10 events. Wait for the simulation to complete and show the result.

To visualize scoring meshes use following commands:

• /score/drawProjection crystalsMesh eDepCrystals globalColorMap - draw global mesh around the NxN crystal assembly.

• /score/drawProjection pmtsMesh eDepPmts globalColorMap - draw global mesh around all sensitive detectors.

• /score/drawProjection crystalMesh1 eDepCrystal1 centerCrystalColorMap - draw unit volume scoring meshes for a particular crystal number (replace 1 with N).

Originally every individual mesh has individual energy deposition color legend. Tweo custom color maps are defined in the program:

• globalColorMap has a maximum projection along the z axis across the global crystals mesh and sensitive detector mesh.

• centerCrystalColorMap - maximum cololor corresponds to the energy deposition in a unit volume in the center crystal with maximum energy deposition.

cmake -DGeant4_DIR=$G4LIB/Geant4-$G4DATA_VERSION/ ./../glass-prototype/

make -j`nproc`

./glass

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#geting-familiar-with-the-program-gui
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#geting-familiar-with-the-program-gui

Visualizing energy deposition in the Detector Construction with Scoring Meshes

Extra custom visualization commands include:

• /myvis/drawStats - prints statistics in the top right corner.

• /myvis/ogl/printPNG and /myvis/ogl/printEPS save viewer image to hard drive.

Running Simulation in Batch Mode

Simulation will run in the batch mode if a macro file is passed to the ./glass program as a parameter (default Geant4 approach).

In the batch mode the visualization driver should be set to ASCIITree . All other drivers instantiated with /vis/open may be switched off (OGL , OGLIX etc).

./glass ./macros/<your-macro-file.mac>

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#running-simulation-in-batch-mode
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#running-simulation-in-batch-mode
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/visualizing-meshes.png?raw=true
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/visualizing-meshes.png?raw=true

It is possible to create a single macro file that does two runs. An interactive run with low statistics followed by the batch run with high statistics. Corresponding macro file

would be:

Facilitating Optical Simulations

Optical simulations are highly resourceful. For instance, simulating one injection event (e-, ~5 GeV energy) on the computing farm in single-threaded mode takes about an

hour. Geant4 needs to break down all the deposited energy into optical photons and calculate their trajectories.

To facilitate calculation of the optical resolution, following approach is proposed. Crystal volume is divided into a number of "unit volumes" along the longitudinal axis (refer

to the image below). Energy deposition in each unit volume is saved. Next, instead of calculating each emitted photon trajectory, we register optical responces obtained from

emittimg 1M photons from the centers of each unit volume. These are photo-electron distribution function obtained from a single photon emitted from the center of each

volume. Essentially, for each particular unit volume these area distributiuon of the quantum efficiences (float number of photo-electrons) obtained at the sensitive detactor

part.

/vis/ASCIITree/verbose 13

/vis/drawTree

Set up detector, and initialize the Run Manager

...

/run/initialize

Set visualization driver

/vis/open OGLIX

Run with low statistics

/run/beamOn 100

Save images and do stuff

...

Close visualization

/vis/disable

/vis/ASCIITree/verbose 13

/vis/drawTree

Second run attempt

/run/initialize

Run with high statistics

/run/beamOn 100000

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#facilitating-optical-simulations
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#facilitating-optical-simulations

Left: accumulating energy depositions in unit volumes. Right: optical responces from centers of each unit volume.

First iteration. Each crystal in the NxN assembly is divided into a number of unit volumes (currently hardcoced to 10). Energy deposition is calculated in each crystals' unit

volume with the help of Scoring Meshes. To turn the above feature on set /detector/useUnitVolumeScoringMeshes true in the macro file. It is enough to have ~5000

events for each incident particle energy run. Please refer to the picture below that demonstrates accumulated energies in the scoring meshes:

Second iteration. For a 1x1 assembly (single block) we and emit a fixed number (currently 1M) of optical photons from the centers of each unit volume. The emission

spectrum of the optical photons should match the one of the studied material. This is achieved as follows. Optical photon emission macro files for a particular material are

generated via a custom Materials::generateEmissionMacro(G4Material* material) function. Next, this macro files are imported in the GPS settings.

Third iteration. Using a ROOT script calcOpticalResolution we merge data from first and second itrerations. Knowing the material scintillation yield and deposited

energy in each unit volume, we calculate number of photons produced inside each unit volume. Next, we reconstruct cumulative light output from all unit volumes in the

following manner. For each single emitted photon from each unit volume we utilize ROOT's TH1::GetRandom() function to obtain resulted PE number saved in the second

iteration. Finally, optical responces from each photon emitted from each unit volume center are saved in "tree_pe" tree in original file with energy deposition in unit volumes.

https://github.com/JeffersonLab/glass-prototype/blob/main/resources/unit-volumes.png?raw=true
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/unit-volumes.png?raw=true

Alternatively, it is possible to pass a directory contatining multiple ROOT energy deposition files for a number of incident particle energies as a first parameter:

Running Multiple Simulatinos with Slurm (Advanced)

Slurm Workload Manager program on the Supercomputer Environment provides a functionality to schedule multiple Geant4 simulations at the same time. A single slurm

script with arrays functionality can generate a series of macro files from a single template macro file. Then each generated macro file is executed in a separate shell

process. Progress of the operation can be tracked in the Scientific Computing JLab interface.

Slurm script examples are located in the ./slurm project folder. Few essential Slurm scripts are following:

• ./slurm/eres-optical.sh - calculates energy depositions for a particular NxN matrix geometry. Also obtains energy depositions in unit volumes (optical resolution,

iteration 1).

• ./slurm/eres-optical-uv-emission.sh - obtains light output from photons emitted from the unit volume centers for a single block (optical resolution, iteration 2).

Analysis of the Output Files

By default, simulation produces series or ROOT files saved under the ./output folder. ROOT scripts that plot simulatuion results are located in the ./draw folder. Every

plotting ROOT script is additionally compiled into ROOT-based executable (mostly for the ease of debugging).

./calcOpticalResolution <root-file-with-energy-deposition-in-unit-volumes> <directory-path-to files-with-pe-responces-from unit-volumes>

./calcOpticalResolution <root-file-with-energy-deposition-in-unit-volumes> <directory-path-to files-with-pe-responces-from unit-volumes>

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#running-multiple-simulatinos-with-slurm-advanced
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#running-multiple-simulatinos-with-slurm-advanced
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#analysis-of-the-output-files
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#analysis-of-the-output-files
https://scicomp.jlab.org/scicomp/home
https://scicomp.jlab.org/scicomp/home

Particles escaping the Geant4 world.

Script escapeParticles.cpp visualizes the locations, energies and particle types that have escaped the Geant4 simulation world boundaries.

https://github.com/JeffersonLab/glass-prototype/blob/main/resources/escape-particles.png?raw=true
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/escape-particles.png?raw=true

Particles escaping the Geant4 world.

Macro resolution.cpp plots energy resolutions for series of output files. If output files were processed to contain the optical information, optical resolutions will be

calculated and plotted as well. Regular and reversed Crystal Ball functions implemented in the RootUtils library are used to fit the energy and optical resolution

distributions. Resolutions are calculated upon the first and second Crystal Ball function momenta (formula obtained in Wolfram Mathematica).

https://github.com/JeffersonLab/glass-prototype/blob/main/resources/Screenshot%20from%202020-12-22%2000-43-16.png?raw=true
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/Screenshot%20from%202020-12-22%2000-43-16.png?raw=true
https://github.com/petrstepanov/root-utils/tree/master/wolfram
https://github.com/petrstepanov/root-utils/tree/master/wolfram

Energy and optical resolutions for a single ROOT file and series of files for different iuncident particle energies.

https://github.com/JeffersonLab/glass-prototype/blob/main/resources/energy-optical.png?raw=true
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/energy-optical.png?raw=true

Locate the .root output files that correspond to the simulations of the same detector geometry for different energies. It is possible to select multiple files in ROOT dialog

box by checking the Multiple files checkbox on the top right of the dialog box and holding the CTRL or CMD key on the keyboard:

Selecting multiple files with ROOT File dialog.

The ASCII data file with energy resolution values for every energy of the incident particle is created. Additionally the energy resolution graph is plotted.

https://github.com/JeffersonLab/glass-prototype/blob/main/resources/Screencast_01-12-2021_09%2033%2055%20AM.gif?raw=true
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/Screencast_01-12-2021_09%2033%2055%20AM.gif?raw=true

Energy resolution plot for multiple incident particle energies.

All above graphs are automatically saved in the same folder where the input data files are located.

Plotting Energy Resolution for Multiple Geometries

A special Gnuplot script ./glass_prototype/draw/energy-resolution/energyResolution.gp can plot series of the energy resolutions for various detector geometries.

open the script with a text editor of your choice:

nano ./draw/energy-resolution/energyResolution.gp

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#plotting-energy-resolution-for-multiple-geometries
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#plotting-energy-resolution-for-multiple-geometries
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/Screenshot%20from%202021-01-12%2021-38-45.png?raw=true
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/Screenshot%20from%202021-01-12%2021-38-45.png?raw=true

Update the data file names in the Gnuplot script to correspond to the energy resolution data points output by the energyResolution.cpp script. Then the energy resolution

series can can be plotted with the following command:

A demonstration output of the Gnuplot script is presented on the picture below:

Series of Energy resolutions for multiple detector geometries.

Copying Results to a Local Computer

gnuplot -p -c ./draw/energy-resolution/energyResolution.gp

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#copying-results-to-a-local-computer
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#copying-results-to-a-local-computer
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/Screenshot%20from%202021-01-18%2015-32-12.png?raw=true
https://github.com/JeffersonLab/glass-prototype/blob/main/resources/Screenshot%20from%202021-01-18%2015-32-12.png?raw=true

In order to copy the results from the Computing Farm to the local computer the scp command can be used. On Windows one must install the PuTTY software to execute

the below command. Native Terminal applications can be used on MacOS and Linux. Use following command to copy the Geant4 output folder to the local machine.

Replace <your-username> with your JLab username:

In order to copy a single file, remove the -r flag from the above command.

Notes from the Former Developers

For Hall C DVCS (DVCS_evt_gen/), see https://wiki.jlab.org/cuawiki/images/f/fa/User_Guide.pdf for a short description on how to run on JLab/ifarm

scp -rO <your-username>@login.jlab.org:/home/<your-username>/Development/glass-prototype-build/output ~/

https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#notes-from-the-former-developers
https://github.com/JeffersonLab/glass-prototype/blob/main/README.md#notes-from-the-former-developers
https://wiki.jlab.org/cuawiki/images/f/fa/User_Guide.pdf
https://wiki.jlab.org/cuawiki/images/f/fa/User_Guide.pdf

