Beam test of LAPPD at CERN PS: The setup (05-19 October 2022)

Deb Sankar Bhattacharya¹, Chandradoy Chatterjee¹, Silvia Dalla Torre¹, Mauro Gregori¹, Alexander Kiselev³, Saverio Minutoli², Mikhail Osipenko²

INFN Trieste¹, INFN Genova², BNL³

26 October 2022

Our first beam test of LAPPD

- We just had a beam test of LAPPD at CERN PS
- This is a joint effort by INFN Trieste, INFN Ge
- Our goal is to measure the single photoelectro

S, from 5 - 19 Oct 2022
enova, and BNL
on time resolution of the LAPPD

• There are 3 talks followed by discussion to consider entirety of the aspects

() 10m

🕓 10m

🕓 10m

(§ 10m

The LAPPD, mounted backward

Everything is within a dark box

Where we are

CERN PS, Hall T10 LAPPD installed downstream of dRICH prototype

Inside the dark box

The output

Waveform

Online signal monitor

Hit map of a Cherenkov ring from GEANT4 simulation

The LAPPD and the pre-amplifier

Can you spot an important difference between the two LAPPD tiles?

additional PCB for grounding anode

The HV setup

VFN TRIESTE Deb Sankar Bhattacharya, LAPPD Informal Online Workshop, 26 Oct 2022

The Digitizer

WEINER VME crate: CAEN V1718 controller board CAEN V1742 Digitizer board with 32 readout channels

STE Deb Sankar Bhattacharya, LAPPD Informal Online Workshop, 26 Oct 2022

DIGITAL MEMORY BUFFER

V1742 Board:

- >4 DRS chips
- > 5 GS/s = 200 ps
- > 32 Analog channels
- > 2 fast triggers (1 global trigger)
- > each channel has 1024 SCA (Cells)
- > one 12 bit ADC in each chip

For Trigger:

Hamamatsu MPPC SiPM (S13360-6025CS)

falltime = 100 ns

The SiPM and the Lens mount

SiPM onboard amplifier

For Timing:

Hamamatsu MCP-PMT (R3809U-50)

Photocathode Window = quartz, diameter = 11 mm **Spectral response : 160 to 850 nm; peaks at 430 nm**

Typical Characteristics Gain = 2×10^5 ; Dark current = 10 nARise time = 150 ps Transit time = 550 ps**Transit time spread = 25 ps**

The distribution of work during the beam test

14 days of beam time in parasitic mode, Availability of the beam = $\sim 50\%$ of time

- Installation of the setup = 2 days
- Exit MCP of LAPPD #87 found short
- Change of LAPPD tile to #124
- Reinstallation of the setup and conditioning of the photocathode (2 days)
- Ground mismatch of the anode of tile #124 and the readout PCB of #87 was found
- Debugging and fixing the problem
- Several other optimisations like
- Debugging rining (crosstalk)
- Masking the beam-pad with black tape + optical grease
- Good data taking = ~last 36 hours

EXAMPLE 1 Deb Sankar Bhattacharya, LAPPD Informal Online Workshop, 26 Oct 2022

Thank you for your attention!

TRIESTE Deb Sankar Bhattacharya, LAPPD Informal Online Workshop, 26 Oct 2022

Kot & Asing the cherent of detector

Question/Comments

Bonanza

Item 2:

