LAPPD R&D @ Brookhaven Lab status update

Alexander Kiselev (BNL)

LAPPD Workshop, October 26, 2022

Topics

- June 2022 beam test at Fermilab
- DC-coupled HRPPD interface
- HRPPD application in a TOF PET setup
- Proximity focusing RICH with LAPPD photosensors for EIC

Work is mostly funded by EIC Project Detector R&D Program (eRD110 consortium "Photosensors for EIC")

Beam test at Fermilab in June 2022

(BNL, Incom Inc., Argonne, MSU, INFN Trieste)

Experimental setup at Fermilab

- G1 .. G4 COMPASS GEM reference tracker
- S1 .. S2 trigger scintillator counters

- A new 20 cm Gen II LAPPD tile 136
 - 10 μm pore MCPs
 - Full glass body (implies 5 mm thick anode base plate)
 - Window material -> UV grade quartz
- GEM reference tracker
- New set of the pixelated readout boards
- Time-of-Flight and imaging in the same setup
- A pair of Planacon MCP-PMTs as a timing reference

 \odot

Very strong cross-talk

Picture gallery

LAPPD, aspheric lens radiator, XYZ-stages

Timing for Time-of-Flight applications

Std Dev 20.67 LAPPD quartz window as a Cherenkov radiator χ^2 / ndf 64.9/77 Constant 101.7 ± 3.8 $\sigma \sim 20 \text{ps}$ 11.96 ± 0.64 Mean Event selection (A) Sigma [presumably 20.78 ± 0.45 120 highly correlated signals] 03 <50% of the overall 02 beam spot signal strength -150 -100 50 -50 Ω Time difference, [ps] DRS4 chip#0: time(ch#03) – time(ch#02) Event selection (B) Std Dev 50.15 χ^2 / ndf 58.42 / 37 4mm pads Constant 36.06 ± 2.07 $\sigma \sim 50 \text{ps}$ -1.947 ± 2.362 Mean Sigma 50.35 ± 1.68 [presumably 35 signals from 15 13 <10% of the different 30F Single photon TTS <50 ps overall groups of photons] signal strength 5mm thick UV grade quartz window: a 120 GeV proton produces a blob of ~100 p.e.'s Due to the TIR, photons only hit the PC in a radial band ~[5.5 .. 12.0] mm -150-100-5050 00 150 20 Time difference, [ps]

DRS4 chip#1: time(ch#15) – time(ch#13)

DRS4 and trace delay calibrations are still "in progress"

DC-coupled HRPPD interface

DC-coupled HRPPD

Tile #4 delivered to BNL beginning of October

- ~120 x 120 mm² footprint; ~100x100 mm² unobscured active area
- 1024 pads, hermetic through vias, 1/8" (~3.2 mm) pitch
- Short MCP stack with 5mm thick quartz window and 3mm thick ceramic base plate

Signal connection

Signal pogo pins: Mill Max 0908 series

0.040

0.050

#72 SPRING LOW FORCE SPRING	Full Stroke Capability : $.055'' \pm .005'' [1,4 \pm 0,127]$
Spring Material : Beryllium Copper Alloy 172	Force @ Mid. Stroke : 45 g ± 20 g
Mid. Stroke : .0275″ [0,7]	Initial Force (Pre-Load) : 15 g

- Should suffice for a basic performance evaluation (and for our TOF PET project application)
- Pogo pin container thickness may require tuning to end up around 50g force per pin

3D integration model

- Parts are being machined and 3D printed as we speak (to be ready first half of November)
- The "final" integration design (custom LGA or ZIF sockets, BGA + a PCB, ..?) will require more work

Dual purpose readout PCB

- A compact universal 132 x 132 mm² board
- Pixellation follows ~3.2mm HRPPD pad pitch
- Two "main" instrumentation options:
 - A 16x16 pad field in the center
 - Pairs of individual pad fields for systematic studies
- Connectivity via either MCX->MCX cables or Samtec->MCX adapters
- Can be used for the DC-coupled HRPPDs (assembly with the pogo pins), as well as for the capacitively coupled HRPPDs / LAPPDs (assembly without the pogo pins)
- Can also be used in a coincidence setup with a picosecond laser

Bare boards are on their way from HK to BNL

TOF PET Seed Grant project (SBU & BNL)

Application requirements in HEP/NP & TOF PET

G

5.2

7.3

16.3

"Conventional" HEP/NP Cherenkov light detectors

, But for TOF applications: σ_t < 20 ps

	Single pl	Single photon time resolution / MCP-PMT anode plane segment		MCP-PMT anode plane segmentation
CERN: LHCb TORCH		~70 ps	- 10 million	1mm wide "strips"
FAIR: PANDA endcap DIRC		<100 ps	1	<0.5 mm wide "strips"
(e)RHIC: EIC barrel DIRC		<100 ps		3x3 mm ² pixels

Time of Flight Positron Emission Tomography (TOF PET)

<1 mm spatial resolution required in transverse direction

Time difference between the two 511 keV gammas in opposing crystals can be used to localize the decay *along the line of response*

S/N Gain with TOF	CTR
SMP	100
$G = \frac{SNR_{TOF}}{2*D} = \sqrt{\frac{2*D}{2*D}}$	CTR 100 50 10
$SNR_{non TOF} \forall \ c * CTR$	10

When <u>a 511 keV gamma photon interacts in a</u> <u>scintillator</u>, a number of <u>Cerenkov photons are</u> <u>produced promptly by energetic electrons.</u>

CTR (Coincidence Time Resolution) = 100 ps $\Rightarrow \Delta x$ = 1.5 cm

Reducing CTR to dozens of ps opens a possibility to use direct imaging instead of multi-event reconstruction

SBU / BNL Seed Grant proposal

- "LAPPDs for TOF PET: a breakthrough in ultra-high sensitivity Positron Emission Tomography using fast affordable Micro-Channel Plate photomultipliers" was approved and started in July 2022
 - Quite some synergy with the HEP / NP LAPPD R&D activities
 Combine expertise and equipment gained via the earlier and ongoing NIH- & DOE-funded projects with a brand new Incom HRPPD as a photosensor

Assembly variant with a 16x16 5mm long crystal matrix

- Same readout board as to be used for EIC-related HRPPD evaluation
- 16x16 LYSO crystal matrices matching HRPPD pixellation
- Prism-PET for Depth-of-Interaction compensation
- 512 DRS4 electronics channels

Assembly variant for systematic studies

Proximity focusing RICH for EIC (BNL, Duke, INFN Trieste, MSU, SBU)

Detector concept

- Recycle pfRICH simulation materials from the ATHENA EIC proposal
 - A "simple" proximity focusing RICH
 - n ~ 1.020 aerogel
 - ~40 cm long expansion volume
- Convert it into a pfRICH+LAPPD concept ...
- ... complemented by a high-performance sampling digitizer electronics to provide ~10ps timing reference in addition to imaging

р

e

Inner radius	~59 mm	
Outer radius	~650 mm	
Total length	~540 mm	

~9.5m along the beam line

Sensor plane segmentation

- Flat sensor surface with minimal gaps
- Consider either 10cm Gen II HRPPDs (A) or a mix of 10cm and 20cm ones (B)
- Grey structure: DIRC support frame boundary

Towards ~100% Time-of-Flight geom. efficiency

- Even that the HRPPD active area (the photocathode and the MCP stack) is much smaller than the tile footprint, the Cherenkov light cone spot in a 5 mm thick quartz window has a base of ~11 mm diameter
 - By making use of tile metallization (or perhaps just relying on a TIR) one should be able to gain timing performance over the whole surface, even though with a degraded resolution towards the tile edges, apparently

Integration, electronics, etc.

- Assume 24x24 HRPPD pixellation suffices (~4.2mm pads) -> 576 pixels per ~12x12 cm² footprint
- A hybrid of Nalu Scientific UDC and AARDVARC v4 chips assumed as a "reference ASIC"
 - 16-channel ASICs (would be better to have 32- or 64-channel ones, of course)
 - ~10GS/s digitizer, ~2GHz ABW, feature extraction, streaming capability (whatever it means), etc.
 - 0dB buffer amplifier (12 mW/ch) available in ARRDVARC V4 -> need a similar solution for a ~20dB preamp

19

Few kW of power dissipation for the whole pfRICH-like system seems to be a real-life estimate