2ND LAPPD WORKSHOP, OCT 26, 2022

MAGNETIC FIELD TESTING OF LAPPD AT ARGONNE NATIONAL LABORATORY

JUNQI XIE

Medium Energy Physics Argonne National Laboratory 9700 S Cass Ave., Lemont, IL 60439

LAPPDS AT G-2 SOLENOID MAGNET

- Two stripline LAPPDs received:
 - # 118, 20 um MCP pore size (completed)
 # 89, 10 um MCP pore size (data under analysi)
- One capacitively-coupled LAPPD received:
 - # 126, 20 um MCP pore size (readout electronics does not work inside magnet field, no data was taken)
- Magnetic field strength: 0.02 T to 1.4 T
- Dark box
 - o Aluminum case
 - Laser input fixed in the center near the bottom on the centerline of the solenoid when the LAPPD is vertical.
- Rotation in the magnetic field:
 - LAPPD tips into or out of the region of stronger magnetic field
 - Move the LAPPD in or out at each angle to compensate for the change in field strength

MAGNETIC FIELD ORIENTATION

- A solenoidal magnetic field should be parallel to the interior walls of the magnet while inside the bore
- The field should curve away from the center line outside the magnet.
- Along the outside the magnet, the field has periodic N and S orientation – some type of active field control
- At ANL, the N direction is into the magnet

HIGH VOLTAGES

- Five high voltages
 - Two separate MCP current circuits
 - o Maximum current delivery
- Initial tests of LAPPD 118 and then LAPPD 89 were restricted by the current capacity of the ANL ISeg HV supplies
- A higher current Caen N1470 was used to finish LAPPD 89 and LAPPD 126 testing

HIGH VOLTAGE AND SIGNAL CONNECTIONS

Unused striplines grounded to SMA shields, both/sides

- Three strips, both ends were brought out to a Caen DT5742 DRS_4 waveform sampler.
- Five high voltages were brought in.
- Excellent pulse waveforms from the stripline LAPPDs.

High voltage

interior cables

Rotation – discrete positions set with hole

GAIN VS. MAGNETIC FIELD STRENGTH, B || P/C E-

- LAPPD shows similar behavior trends as R&D MCP-PMT
 Gain is shown as a function of magnetic field strength. The gain declined from over 2x10⁷ to 7x10⁵ as the field strength was increased from 0.02 T to ~0.9 T. It was recovered at higher field strengths by increasing the MCP voltages.
- At a field strength of 1.39 T, the gain was recovered to 6x10⁶ by significantly increasing the MCP voltages.

Argonne

GAIN VS. ROTATION ANGLE AT SMALL B FIELD: 0.02 T

- Gain decreases as the LAPPD is rotated
- B field is no longer parallel to photoelectron motion
- Signal electron cluster landing zone on the anode moves with relative B angles

GAIN VS. ROTATION ANGLE: 0.02 T

- Pulse height distributions show motion of electrons from one strip to another
- Striplines are in and out of the page
- Motion of electrons appears to be perpendicular to strips, instead of parallel to strip

10000 🖂

1000

Strip -8 0.02T Strip -9 Strip -10

60

electron

anode

Argonne

40

20

8

GAIN VS. ROTATION ANGLE AT LARGER B FIELD: 1 T

- Similar behavior as in small B field.
- Stronger angle affection in larger B field.
- Signal electron cluster landing zone on the anode moves with relative B angles.

SUMMARY

- Stripline LAPPDs were tested in Argonne g-2 magnet facility, serve as baseline performance of LAPPD in magnetic field.
- The LAPPD shows similar behavior trends as previous R&D MCP-PMT.
- LAPPD gain decreases as magnetic field increases, the gain can be recovered by increasing the MCP bias voltage.
- The signal cluster moves as the B field direction changes.
- Future test of mature LAPPD/HRPPD will be performed in early 2023.

ACKNOWLEDGMENTS

W. Armstrong, I. Cloet, J. Elam, K. Hafidi, M. Jadhav, S. Joosten, J. Kim, A. Mane, Z.-E. Meziani, C. Peng, R. Wagner, D. Walters, L. Xia, H. Zhao, M. Zurek Argonne National Laboratory, Argonne, IL, 60439

M. Aviles, M. Foley, C. Hamel, A. Lyashenko, M. Minot, M. Popecki, S. Shin Incom, Inc., Charlton, MA 01507

And many others ...

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-AC02-06CH11357 and DE-SC0018445.

Thank you for your attention! Questions?

