R&D on MCP ALD coating at Argonne

Anil Mane, Jeffrey Elam Applied Materials Division 10/26/2022

Presentation for

LAPPD Workshop

₩ Wednesday Oct 26, 2022, 12:00 PM → 5:45 PM US/Eastern

Argonne 🕰

Description Organizers: Silvia Dalla Torre (INFN), Alexander Kiselev (BNL), Simona Malace (JLab), Deb Sankar Bhattacharya (INFN), Junqi Xie (ANL)

Hosted by CFNS: https://stonybrook.zoom.us/j/97182934798?pwd=TGJ2dkNwdUlqYS9Yc2owUVVTd05iUT09

Brookhaven

Jefferson Lab

ALD coatings for MCPs

Microchannel plates (MCPs)

Elections and ion Multiplications, Photomultiplier tubes, Field emission displays, Night Vision Devices, high speed cameras Time-of-flight (ToF) mass spectrometry, Security Scanners, SNM (U, Pu) detection, Neutron detector, Medical imaging (PET scanners)

2

A. Mane et. al., SPIE (2011) D. Beaulieu, et. al., Nucl. Instr. Meth. Phys. A, 633, S59, (2011)

- •Independent R and SEE properties
- Low cost
- •Pb-Free
- •Excellent Stability

Resistivity Range for MCPs

ALD coatings for MCPs

MCP gain map by Phosphor imaging

MCP gain map by X-delay line imaging

Independent R and SEE properties
Pb-Free

- Robust coatings properties
- Excellent Stability
- •Low-cost processing cost in batch production mode •Possible to make MCPs (electron amplifications) structures in different forms

MCP properties:

- •High Gain
- Very Low Background (dark rate)
- Excellent long-term Stability
- 10x psec time resolution

Part of LAPPD program from day 1 and it's a backbone of technology

Working 20cm x20cm MCP in large area photodetector (Gain Map) •High Gain

- Very Low Background (dark rate)
- Excellent long-term Stability
- 10x psec time resolution

ALD MCPs in Photodetector

Photographs of various types of ALD MCPs

ALD coatings screening for advanced MCPs

ALD coatings screening for advanced MCPs

Quick optimization of SEE layers and coating uniformity quality

MCP ALD coatings for 3D printed capillary array

ALD coatings (R+ SEE)

Wagner etal, US Patent 10,403,464

ALD materials for MCP Detectors

Membrane MCP

MCP

- Barriers for ion feedback
- Define electron emission layer @ input (first strike)
- Neutron sensitive membranes for neutrons detection

- Mane etal, US Patent 10,867,768
- ANL-IN-22-133 and ANL-IN-22-131 (Membrane/Grid types electron amplification structures)

ALD coating for MCPs

Adjusting MCPs TCR for various operations

Mane et. al, ALD 2017 Conference

ALD coating for MCPs Adjusting resistivity of MCPs for various operations

Chem-1 process 10 10 Desire resistivity range for MCPs Process -1 for Around Room Temperature MCP operation 10 Process 3 Process -2 for Low Temperature MCP operation (Liquid Ar, Xe) ofW:Al_oO 10 Resistivity (Ω-cm) Process -3 for High Temperature MCP operation 10 10⁶ Process 2 Process 1 10 ofW:Al,O, ofW:Al_O 10 10 300 100 200 400 500 600 Temperature (K) Chem-2 process 19 **High Temperature** Low Temperature TCR = -0.00718 -TCR = -0.01518 18 17 Ln(R) In(R) In(R) ow to high Temperature 16 16 -17 CR = -0.016 15 15 16 14 -80 -60 -40 -20 20 40 40 60 80 100 120 140 160 180 200 -100 Λ -150 -100 -50 0 50 100 150 200 MCP temperature (C) MCP temperature (C) MCP temperature (C)

In-situ Resistance – ALD: Concept and Hardware

In-situ R measurement for ALD of resistive Nanocomposite

We can dial resistance of MCPs very precisely

ANL Invention/patent ANL IN-21-105

WHAT IS ARGONNE ROLE

- Understanding current ALD-MCP baseline process issues
- Developing processes and understanding chemistries
- Exploring ALD precursors for same materials
- Developing efficient hardware for processing MCPs faster
- Effect of contamination, ambient
- New ways of making electron amplifying structures

Transferring best learning knowledge to Incom Inc

Take away messages

- ALD-MCPs are backbone of LAPPDs and other MCP detectors
- ALD materials research is very essential for current and advanced MCPs
- ALD materials for magnetic field application is needed to explore

Near term we are working on:

- ALD coating for fast timing MCPs (selective ALD coatings)
- Low-TCR MCPs via developing resistive layers
- High gain MCPs via high SEE coefficient materials
- ALD-MCPs sensitivity under different ambient (open end detectors)

Acknowledgements

Office of Science

