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Constructing the observable: Key idea

e−(`) +N(P )→ e−(`′) + h(Ph) +X

• Want to precisely measure PhT in the TMD region PhT ∼ ΛQCD � Q

⇒ TMD factorization theorems in terms of universal TMD PDFs and FFs

• Challenge: PhT is defined w/r/t photon direction reconstructed from ~̀′

⇒ Typical exp. resolution |~̀′| = (20± 0.5) GeV⇒ PhT = (1± 0.5) GeV

Idea
Construct TMD-sensitive observable q∗ purely in terms of lab-frame angles.

• Bypasses the need to reconstruct photon momentum qµ altogether
I.e., for the TMD part = ~PhT . Still needQ, x (and z) to get 4D distribution→ later.

• Inspired by (but with key di�erences to) φ∗η observable in unpol’ed Drell-Yan:
[Banfi et al., EPJC 71, 1600 (2011), arXiv:1009.1580 ]
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Constructing the observable: Acoplanarity angle

target
rest frame

Trento frame EIC frame

lepton
plane

~q
N ~̀

~̀′

~Ph

~PhT

φrest
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• Look at target rest frame with incoming electron along z axis
• Boost along z direction & reverse direction of z to get to EIC lab frame
• Azimuthal angles change sign, rapidities (polar angles) easy to relate

• Need (small) nonzero PhT for e−N → e−h scatter to be (a little bit) nonplanar

• Work out acoplanarity angle for small λ ∼ PhT /Q� 1:

tanφrest
acop =

sinφh PhT

zQ
√

1− y
+O(λ2)
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Constructing the observable: Double Angle method revisited
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• Acoplanarity angle guarantees∝ PhT :

tanφrest
acop =

sinφh PhT

zQ
√

1− y
+O(λ2)

• For PhT ∼ λQ� Q, can get Q, y (and x) from hadron & electron angles:

Q2 = (`0rest)
2
[sin2 θe

cos2 α
−
(
1− sin θh

cosα

)2]
+O(λ) y = 1− sin θh

cosα
+O(λ2)
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Constructing the observable: Double Angle method revisited
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• Convert to EIC lab-frame pseudorapidites and take M � Q (for brevity):

Q2 = (2P 0
EIC)2 e

ηe+ηh

1 + e∆η
+O(λ) y =

1

1 + e∆η
+O(λ2)

I Combine with φacop to construct a purely angular SIDIS TMD observable:

q∗ ≡ 2P 0
EIC

eηh

1 + e∆η
tanφEIC

acop = − sinφh
PhT
z

[
1 +O(λ)

]
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Theory: All-order TMD factorization for q∗

• Start from simple form of q∗ at q∗ � Q:

q∗ = − sinφh
PhT
z

[
1 +O(λ)

]
• Insert into standard SIDIS TMD factorization, get:

dσ

dx dy dz dq∗
=

2z3

π
σ0

∫ ∞
0

dbT
{

cos(q∗bT )
(
I
[
H f̃1 D̃1

]
− εI

[
H h̃⊥(1)

1 H̃
⊥(1)
1

]
+ λeSL

√
1−ε2 I

[
H g̃1L D̃1

])
+ cosφS sin(q∗bT )ST

(
I
[
H f̃⊥(1)

1T D̃1

]
+ εI[H h̃1 H̃

⊥(1)
1 ]

+
ε

4
I
[
H h̃⊥(2)

1T H̃
⊥(1)
1

])
− sinφS sin(q∗bT )λeST

√
1− ε2 I

[
H g̃⊥(1)

1T D̃1

]}
• Factorizes in terms of standard TMD PDFs and FFs

• Can disentangle (almost) all contributions by forming asymmetries, e.g.

double asymmetry(±q∗,±λe) ∝ Worm-gear T function g̃(1)
1T

[cf. Horstmann, Schäfer, Vladimirov, 2210.07268, for current challenges in extracting g̃
(1)
1T ] 6/15



Expected detector resolution
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• Consider 18× 275 EIC, h = π+, |ηh| < 1,−3.5ηe < −1,
x > 0.001 , 0.01 < y < 0.95 , z > 0.05 , Q2 > 16 GeV2 , W 2 > 100 GeV2

• Apply Gaussian smearing according to Handbook Detector (tracker only):
σp/p = 0.05% p⊕ 0.5% (0.05% p⊕ 1%, 0.1% p⊕ 2%)
for |η| < 1 (1 < |η| < 2.5, 2.5 < |η| < 3.5)
• Assume angular resolution σθ,φ = 0.001

⇒ q∗ expected to outperform qT = PhT /z by a factor of 10 in resolution 7/15



Statistical Sensitivity
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• Generate normalized pseudodata from a simple TMD PDF/FF model at fixed x, z:

f̃ NP
1 (bT ) = e−ω1b

2
T D̃NP

1 (bT ) = αe−ω2b
2
T + (1− α)(1− ω3b

2
T ) e−ω3b

2
T

• Bayesian reweighting assuming 10 fb−1, Nπ+ = 4.18× 108 across 1000 bins

• Populate Gaussian priors for free parameters ωi from MAPTMD22 fit
[Bacchetta et al., 2206.07598]

⇒ Statistical sensitivity of q∗ to underlying TMD physics is similar to PhT 8/15



Robustness against systematic bias
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Can also inject a broad ansatz for systematic bias into Bayesian reweighting:

1. Nonuniform detector response ε(X) with X = {pe, ph, ηe, ηh}, e.g. e�ciency:

ε(X) = 1 + ∆εX
(
X − 〈X〉

)
/∆X

⇒ Similar impact on extracted model parameters using either q∗ or PhT

2. Electron momentum scale/calibration uncertainty: pe → (1 + δpe) pe

⇒ q∗ perfectly robust, large bias when using PhT 9/15



Summary of observable construction & properties

Proposed a new SIDIS TMD observable q∗ = 2P 0
EIC

eηh

1 + e∆η
tanφEIC

acop:

• Defined purely in terms of electron and hadron angles in the lab frame.

I Eliminates need to reconstruct qµ for most fickle part of measurement.
I Superior resolution expected compared to PhT .
I Independent of momentum calibration by construction.

• Comparable statistical sensitivity & robustness against non-uniform response.
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Two kinds of reconstruction error (one of which is actually a theory error)

Issue: Kinematic reconstruction methods (Q2, x, y)had using the hadronic final state
fundamentally measure a di�erent observable and will not in general yield
the actual truth value (Q2, x, y)truth 6= (Q2, x, y)had

truth even at truth level.

• Instead, will in general have (same for x, y):

Qhad
det = Qtruth +

[
Qhad

truth −Qtruth

]
+
[
Qhad

det −Qhad
truth

]
≡ Qtruth + ∆obs + ∆det

• Typically, ∆obs = O(αs) or ∆obs = O(λ) = O(PhT /Q) for TMD SIDIS.

⇒ E�ect can be missed during design if generator uses tree-level hard scattering or
does not include power corrections to TMD factorization/soft and collinear limits.

. . . and all of this is okay, but . . .

Key question (from theory perspective, but also analysis sustainability, . . . )

How hard will it be to compute and correct for ∆obs during (re)interpretation?
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The Bad – Reinterpretation impossible

• Unfold to a quantity only defined within the generator/at tree level
e.g. “struck quark angle”

• Cannot be corrected to higher orders/powers without “inverting” the generator
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The Ugly – Reinterpretation challenging

• Use total momentum/angle of all hadronic radiation inside fixed acceptance cuts

• Easy to reinterpret at strict leading power in λ ∼ PhT /Q in the TMD limit

I Hadronic final state and beam remnant are collimated, well separated

• Much harder to reinterpret for general PhT , where the observable becomes
sensitive to details of splitting/hadronization near boundary (IRC unsafe)
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The Good – Reinterpretation doable

• Using IRC safe or simple hadron-level information about the hadronic final state
yields a reconstruction that is interpretable for any PhT .
e.g. find axis by recursive jet algorithm (anti-kT, Centauro, . . . ),

by minimizing a DIS event shape, . . .

• Also very promising: white-box (or white-boxeable . . . ) ML frameworks
[See e.g. Pecar, Vossen, 2209.14489, using PFNs introduced in Komiske, Metodiev, Thaler, 1810.05165]

• Our personal favorite for SIDIS, used to cancel factors in q∗:
Use the angle of the ID’ed hadron itself.

I Ensures reinterpretability in terms of dσSIDIS

d3 ~Ph d3~̀′

= TMD factorization at leading + first subleading power
+ matching to collinear factorization

• All of these are guaranteed to approach the true (Q, x, y)

to all orders in αs as PhT /Q→ 0 by power counting
(as long as beam remnant is vetoed e�ciently)

• But in all cases, should disentangle ∆obs and ∆det!
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Summary

Proposed a new SIDIS TMD observable q∗ = 2P 0
EIC

eηh

1 + e∆η
tanφEIC

acop:

• Defined purely in terms of electron and hadron angles in the lab frame.

I Eliminates need to reconstruct qµ for most fickle part of measurement.
I Superior resolution expected compared to PhT .
I Independent of momentum calibration by construction.

• Comparable statistical sensitivity & robustness against non-uniform response.

Discussed SIDIS hadronic qµ reconstruction with an eye towards (re)interpretability:

• Hadronic methods for reconstructing qµ are a great tool, and remain
needed for other three directions of 4D measurements also when using q∗.

• Great opportunities for productive experiment/theory dialogue
to ensure reinterpretability at the precision level.
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Thank you for your attention!
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