Vertex Position for T0 Determination

Brian Page
GD\&I WG Meeting
October 24 ${ }^{\text {th }}, 2022$

Outline

\square Description of model used to simulate vertex distributions and correlations between vertex positions and collision times
\square Techniques used to extract T0 -18×275 beam energy
\square Comparisons with 10×100 and 5×41 beam energies

Vertex Model

Vertex Model

\square The model shown on the previous slide is of course a simplification, although the general features will hold
> Everything is assumed as gausian - no tails or skew to the bunch shape
$>$ Particle transport model by Jarda can be seen here: https://www.dropbox.com/s/u3ssx2je2syaite/movi e.mp4?dl=0
\square Bottom line: The techniques discussed should be sound and magnitude of the effects we see should be accurate, but don't assume the TO resolutions are exact to the picosecond level
\square N.B. The bunch directions shown on the previous slide are for IP8, but this has no effect on the conclusions below

ITsonir

Z-Vertex - TO Correlations: 18x275

Z-Vertex and TO of the collision are tightly correlated due to the relative size differences of the hadron and electron bunches (6 vs 0.9 cm) - practically, determined by size of electron bunch

Z-Vertex - TO Correlations: 18x275

$Z[m m]$	Mean [mm]	Sigma [mm]
$[-101,-99]$	96.1	9.3
$[-76,-74]$	71.7	8.84
$[-51,-49]$	47.7	8.84
$[-26,-24]$	23.8	8.89
$[-1,1]$	-0.08	8.90
$[24,26]$	-24.0	8.89
$[49,51]$	-47.8	8.88
$[74,76]$	-71.8	8.70
$[99,101]$	-96.1	9.01

- For a given Z-vertex, the possible TO values follow a gaussian distribution

The sigma of the TO distribution is roughly constant as a function of Z and has a value of $\sim 8.9 \mathrm{~mm}$ ($\sim 30 \mathrm{ps}$)Conversion between mm and ps : divide by $0.3 \mathrm{~mm} / \mathrm{ps}$

Z-Vertex and TO of the collision are tightly correlated due to the relative size differences of the hadron and electron bunches (6 vs 0.9 cm) - practically, determined by size of electron bunch

Adding X-Vertex Information: 18x275

\square Because of the crossing angle and bunch crabbing, the X -vertex of the collision will change as the bunches move through each other
\square The X position is not very well correlated with Z (or TO), but a combination of any two of X, Z, and $T O$ should be well correlated with the thirdBreak the TO Vs Z-vertex plot into bins based on X -vertex position
$\square \times$ bins are 50 microns wide - should be an achievable resolution

Vertex Resolution

Taken from ATHENA proposal - meant to provide a sense of what resolution would be reasonable

Adding X-Vertex Information: 18x275

Choose the Z-vertex bin at -25 mm and look at T0 distributions for various X-vertex bins
$\square X$ and Z binned $T 0$ distributions have much better resolution than Z binned alone (~ 18 vs $\sim 30 \mathrm{ps}$)

X Bin	Mean $[\mathrm{mm}]$	Sigma $[\mathrm{mm}]$
0	34.6	6.14
1	29.5	5.4
2	27.0	5.36
3	24.5	5.39
4	22.0	5.44
5	19.5	5.38
6	14.1	6.24

Basically, X-Vertex position is telling where within the electron bunch the colliding particle comes

Z-Vertex - T0 Correlations: 10x100

$Z[\mathrm{~mm}]$	Mean $[\mathrm{mm}]$	Sigma $[\mathrm{mm}]$
$[-101,-99]$	98.0	6.96
$[-76,-74]$	73.5	6.89
$[-51,-49]$	48.9	6.95
$[-26,-24]$	24.4	6.98
$[-1,1]$	-0.11	6.96
$[24,26]$	-24.6	6.97
$[49,51]$	-49.1	6.94
$[74,76]$	-73.5	6.91
$[99,101]$	-98.2	6.74

X-Vertex - Z-Vertex - T0 Correlations: 10x100

X Bin	Mean $[\mathrm{mm}]$	Sigma $[\mathrm{mm}]$
0	31.5	5.58
1	28.1	5.20
2	26.3	5.25
3	24.7	5.23
4	22.9	5.24
5	21.1	5.18
6	17.7	5.61

Z-Vertex - T0 Correlations: 5x41

$Z[\mathrm{~mm}]$	Mean $[\mathrm{mm}]$	Sigma $[\mathrm{mm}]$
$[-101,-99]$	98.3	6.89
$[-76,-74]$	73.6	6.94
$[-51,-49]$	49.0	6.99
$[-26,-24]$	24.5	6.99
$[-1,1]$	-0.1	6.99
$[24,26]$	-24.7	7.00
$[49,51]$	-49.2	6.95
$[74,76]$	-73.8	6.95
$[99,101]$	-98.3	6.83

X-Vertex - Z-Vertex - T0 Correlations: 5x41

X Bin	Mean [mm]	Sigma [mm]
0	29.5	6.19
1	26.8	5.97
2	25.7	5.93
3	24.6	5.90
4	23.4	5.99
5	22.3	5.89
6	19.6	6.10

Summary

\square Bunch sizes and beam crossing configuration provide opportunity to derive the time of the collision from the position of the primary vertex
\square Based on the model used to simulate beam effects in MC, TO resolutions on the order of 20 to 25 pico seconds should be achievable by measuring the X and Z positions of the primary vertex within reasonable tolerances
\square Beam energy combinations of $18 \times 275,10 \times 100$, and 5×41 in hi-divergence mode were compared: T0 resolutions for 18×275 and 10×100 were comparable and somewhat better than for 5×41
\square Possible next step - look into EIC machine simulations of the interacting beams to confirm model predictions
\square Additional information in the technical note on Beam Effects:
https://zenodo.org/record/6514605\#.YOVOrS-B1qs

Back-up

PYTHIA-8 Vertex Model

$$
\left.\begin{array}{l}
z_{\mathrm{Had}}^{\mathrm{Acc}}=\operatorname{Cos}\left(\frac{\theta}{2}\right) \times t+z_{\mathrm{Had}}^{\mathrm{Bunch}} \\
z_{\mathrm{Lep}}^{\mathrm{Acc}}=-\operatorname{Cos}\left(\frac{\theta}{2}\right) \times t+z_{\mathrm{Lep}}^{\mathrm{Bunch}}
\end{array}\right\}
$$

Z-position of interacting bunch from each beam as a function of time given by this set of equations

$$
\left\{\begin{array}{l}
t_{\mathrm{Col}}=\frac{\left(z_{\mathrm{Lep}}^{\mathrm{Bunch}}-z_{\mathrm{Had}}^{\mathrm{Bunch}}\right)}{2 \times \operatorname{Cos}\left(\frac{\theta}{2}\right)} \\
z_{\mathrm{Col}}=\frac{\left(z_{\mathrm{Lep}}^{\mathrm{Bunch}}+z_{\mathrm{Had}}^{\mathrm{Bunch}}\right)}{2} \\
x_{\mathrm{Col}}=t_{\mathrm{Col}} \times \operatorname{Sin}\left(\frac{\theta}{2}\right)
\end{array}\right.
$$

Transport Model Vertex

Developed by Jaroslav Adam - movie available at: https://eic.github.io/resources/simulations.html

Species, energy (GeV)	Vertex size	Transport model	PYTHIA-8	
proton	electron	$\sigma_{x}(\mathrm{~mm})$	0.1894 ± 0.0014	0.1403 ± 0.0001
275	18	$\sigma_{y}(\mu \mathrm{~m})$	10.0675 ± 0.0013	8.0173 ± 0.0056
		$\sigma_{z}(\mathrm{~mm})$	32.92 ± 0.12	30.24 ± 0.02
proton	electron	$\sigma_{x}(\mathrm{~mm})$	0.2057 ± 0.0023	0.1313 ± 0.0001
100	10	$\sigma_{y}(\mu \mathrm{~m})$	12.2144 ± 0.0018	8.0221 ± 0.0057
		$\sigma_{z}(\mathrm{~mm})$	36.00 ± 0.15	35.13 ± 0.02
proton	electron	$\sigma_{x}(\mathrm{~mm})$	0.2429 ± 0.0020	0.1649 ± 0.0001
41	5	$\sigma_{y}(\mu \mathrm{~m})$	25.0197 ± 0.0060	19.0005 ± 0.0134
		$\sigma_{z}(\mathrm{~mm})$	37.77 ± 0.28	37.62 ± 0.03
Au ion	electron	$\sigma_{x}(\mathrm{~mm})$	0.3210 ± 0.0035	
110	18	$\sigma_{y}(\mu \mathrm{~m})$	15.1721 ± 0.0025	
		$\sigma_{z}(\mathrm{~mm})$	36.00 ± 0.07	
Au ion	electron	$\sigma_{x}(\mathrm{~mm})$	0.3130 ± 0.0022	
41	5	$\sigma_{y}(\mu \mathrm{~m})$	15.3381 ± 0.0048	
		$\sigma_{z}(\mathrm{~mm})$	59.91 ± 0.36	

Table 3: Results on expected primary vertex size from the transport model for ep and e-Au beams and comparison to PYTHIA-8

T0 for Z Slices and X Vs Z-Vertex Positions: 10x100

T0 for Z Slices and X Vs Z-Vertex Positions: 5x41

Relevant Beam Parameters

Table 4: Parameters used in the PYTHIA-8 implementation taken from Table 3.3 in the CDR. The designations h and v stand for horizontal (x direction) and vertical (y direction).

Species	Proton	Electron	Proton	Electron	Notes
Energy $[\mathrm{GeV}]$	275	18	41	5	
RMS Emittance $\mathrm{h} / \mathrm{v}[\mathrm{nm}]$	$18 / 1.6$	$24 / 20$	$44 / 10$	$20 / 3.5$	Used with β^{*} to determine bunch size
$\beta^{*} \mathrm{~h} / \mathrm{v}[\mathrm{cm}]$	$80 / 7.1$	$59 / 5.7$	$90 / 7.1$	$196 / 21$	Used with emittance to determine bunch size
RMS $\Delta \theta \mathrm{h} / \mathrm{v}[\mu \mathrm{rad}]$	$150 / 150$	$202 / 187$	$220 / 380$	$101 / 129$	Used to determine angular beam divergence
RMS Bunch Length $[\mathrm{cm}]$	6	0.9	7.5	0.7	Used in vertex calculation
RMS $\frac{\Delta p}{p}\left[10^{-4}\right]$	6.8	10.9	10.3	6.8	Used to set beam energy spread

