onal Laboratory

AC-LGAD based - Timing Tracking Layer (TTL)
 Start time determination

May 16, 2022

Friederike Bock
 for the ORNL Relativistic Nuclear Physics Group

F. Bock, M. Demarteau, M. Fasel, E. Glimos, O. Hartbrich, H. Hassan,
F. Jonas, C. Loizides, J. Osborn, M. Poghosyan, K. Read, A. Russu, J. Schambach, N. Schmidt

Geometry \& Basic Assumptions

- Plate design for barrel
- Alternating sensor placement (top \& bottom) \rightarrow path lenth corrected in simulations
- Small rapidity gap still to be optimized
- Simulations with pixels of $500 \times 500 \mu \mathrm{~m}$, $\sigma_{x y}=30 \mu \mathrm{~m} \& \sigma_{t}=25 \mathrm{ps}$

Initial start time determination

a) scattered electron found

- Scattered electron found if: $p_{e^{-}}>3 \mathrm{GeV} / c$, $\eta<0.5$ in calo/ cherenkov detector acceptance
- Assuming calo \& cherenkov detectors together can identify electron w/o losses
\Rightarrow initial t_{0} determined based on scattered electron

b) scattered not electron found
- Assume all particles in event charged pions
- All orgininate from common vertex
- Needs at least 2 tracks with TTL hits
\Rightarrow initial t_{0} determined based pion assumption

Iterative Improvements to t_{0}

- Common procedure after intial t_{0} determination
- For all particles the velocity estimate is based on $t_{\text {part,rec }}-t_{0, i t-1}$
- In iterations $1 / \beta$ is calculated and compared to expectation value for $\pi, \mathrm{K}, \mathrm{p}$ and e \rightarrow assumed to be corresponding particle if within 1% of expectation value \& $p<6 \mathrm{GeV} / c$ $\rightarrow p>15 \mathrm{GeV} / c$ pion mass assumed, except for scattered electron candidates
- Latest after 4 iterations no significant change observed any more

PID performance of TTL

- Calculated t_{0} enters for every event directly
- Optimized η coverage in particular towards electron end cap would improve scattered electron finding
\rightarrow PID discrimination in barrel \& forward direction

PID performance of TTL

- Calculated t_{0} enters for every event directly
- Optimized η coverage in particular towards electron end cap would improve scattered electron finding
\rightarrow PID discrimination in barrel \& forward direction

Questions?

