

Bringing Science Solutions to the World

Track reconstruction with ACTS in ePIC detector

Wenqing Fan and YueShi Lai (with Beatrice Liang, Ernst Sichterman, Shujie Li)

ePIC GD/I meeting, 10/31/2022

Track reconstruction performance

- Symmetric tracking geometry + 1.7T field
 - B field is scaled up from BarBar field map (1.5T to 1.7T)
 - PIC geometry material map added by Shujie Li
- Performance test: check if the current geometry + track reconstruction algorithm gives resonable performance
 - * Single pion events: uniform p, ϕ , η distribution (p range: 0 to 30GeV, η range: -3.5 to 3.5)
 - Track reconstruction with truth seeding

Momentum resolution (DD4HEP vs fast simulation)

Momentum resolution (DD4HEP vs fast simulation)

Momentum resolution (DD4HEP vs fast simulation)

Results from DD4HEP in agreement with the fast simulation results

YR requirement achieved for most of the η range

Momentum and pointing resolution

- Comparison of different pixel sizes (10µm, 15µm, 18µm)
 - Intial study by Stephen Maple: <u>https://indico.bnl.gov/event/17347</u>
 - Sizable effect on the momentum resoluction (especially at higher p range)
 - Small effect on the pointing resolution: multiple scattering effect dominant (large and thick beam pipe)

From Ernst's talk: https://indico.bnl.gov/event/17348/

Update on Geometry

Re-optimized baseline geometry discussed several times;

- 2 curved silicon vertex layers, r = 36, 48 mm, l = 270mm
- 1 curved silicon dual purpose layer r = 120mm, l = 270mm
- 1 stave-based sagita layer r = 270 mm, I = 540 mm
- 1 stave-based outer layer r = 420 mm, l = 840 mm
- 5 disks on either side of the nominal IP,
 - |z| = 250, 450, 700, 1000, 1350 mm
 - Inner radii >= 36 mm, outer radii <= 430 mm

Change necessary in the electron (negative) arm to accommodate new constraints mostly from PID, c.f.

- GD/I 2022-09-25, https://indico.bnl.gov/event/17295/
- EPIC 2022-10-06, https://indico.bnl.gov/event/17289/

New envelopes as of September 29, c.f. https://eic.jlab.org/Geometry/Detector/Detector-20220929172703.html

- z_{min} = -1186 mm, z_{max} = 1800 mm, r_{out} = 600 mm

Propose a pragmatic approach of only "moving" the outermost disks in the electron direction inwards,

- z = -250, -450, -650, -900, -1150 mm
- minimal (or no) changes to inner and outer radii,
- inevitable loss of lever-arm in tracking, e.g. ~22% for -2.5 < η < -2.0

Alternatives considered:

- dropping outermost electron disk; results in inability to track for η < -3.2, suboptimal use of available space,
- moving innermost disk inwards to partially recover lever arm for -2.5 < η < -2.0; loss of commonality with hadron arm, acceptance near η ~ -2.6 defer for now,
- changing the angle of the inner projective cone; seemingly inevitable to introduce additional material in the electron direction for $\eta > -1$

no good arrangement to make the hadron-arm single-projective,

Not considered here / so far:

- r_{out} = 600 mm is now a combined envelope for MAPS and MPGD; could consider expanding the MAPS radius,
- small insert-like disks at large -z for far backward (electron) tracking to recover (and possibly extend) the tracking lever-arm in this region.

Details of the new tracking geometry implementation

From Shujie's talk: https://indico.bnl.gov/event/17394/

New geometry (+new magnetic field map)

- Geomtry update because of the new tracking envolope
 - Only change the electron-going side disk array: outter most 3 disks moved inwards (more details in Ernst' talk: <u>https://indico.bnl.gov/event/17348/</u>)
 - ~22% worse momentum resolution expected from the fast simulation study by Ernst
 - Consistent results from full simulation

Outstanding issues with truth seeding

- p and DCA_z resolution show unexpected behavior towards low p at forward and backward rapidities
 - Expectation: increase of DCA_z towards low p which is observed in fast simulation and Fun4All (GenFit used for track fitting)

Previously on realistic seeding

- Realistic seeding code developed by Yue Shi available in DD4HEP/juggler (<u>https://</u> indico.bnl.gov/event/16068/)
- Checked realistic seeding with ATHENA geometry (<u>https://indico.bnl.gov/event/</u> <u>16583/</u>)
 - Realistic seeding works well in midrapidity w/ "maxSeedsPerSpM = 1"
 - Low efficiency and problematic momentum reconstruction at low momentum (<10GeV) at forward rapidity

Code now improved by YueShi and tested with ePIC geometry

Realistic seeding status (by YueShi Lai)

- Focus on the 1–2 GeV as the more challenging tracks
- "Ntrack = 0" is inefficiency, "Ntrack = 1" single reconstruction, "Ntrack ≥ 2" multiple reconstruction
- Good efficiency except for the 40° region
- Some multiple reconstruction in the forwards

Forward (by YueShi Lai)

- Same 1-2 GeV tracks, 2 < η < 2.5</p>
- Reasonable performance, multiple reconstruction, some non-Gaussianess in the Δp/p

Forward (by YueShi Lai)

Same 1-2 GeV tracks, $|\eta| < 0.88$

Excellent performance in the midrapidity

- $25-45^{\circ}$, the raw inefficiency is $\approx 45\%$ (shown as 1D histogram for clarity)
- Tracing through ACTS shows that only 16% is genuine, no seeds found type of inefficiency
- About 30% failed to generate initial track parameter due to coordinate transform (i.e. geometry) failure
- Only recently traced to this granularity inside ACTS, currently under investigation

Summary

- Status of track finding and performance
 - Track reconstruction with truth seeding perform mostly as expected in DD4HEP with the material map (for both symmetic and updated geometry)
 - YR achieved in mid and forward rapidities
 - * Missing information: more tracking information (χ^2 , # of associated hits), primary/secondary vertex reconstruction
- Status of realistic seeding
 - Significant improvement since last version for low momentum tracks at forward rapidity
 - Current issue: the low efficiency around 25-45 degree, under investigation now
 - Plan to test with DIS events and events with background after stable and reasonable performance achieved with single track events