Brookhaven National Laboratory High Energy Theory Seminar

Physics Potential for High Energy Muon Colliders

Zhen Liu University of Minnesota 12/08/2022

High Energy Rules

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

The power of cleanness

- LEP still is a headache/treasure of theorists
- 1M Higgs Higgs factory v.s. 0.5B Higgs HL-LHC

3

The power of cleanness power of high energy!

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

(A) Timeline

Outline

- Thorny challenges
- Physics Cases

Technical risk registry

 Technical risk registry of accelerator components and systems for future very high energy pp, muon and WFA colliders: lighter colors indicate progressively higher TRLs (less risk), white is for either not significant or not applicable.

Physics @ High E MuC

BNL HET Seminar

Brookhaven

ational Laboratory

Zhen Liu

12/08/2022

6

Outline

- Thorny challenges
 - Cooling
 - BIB

• Physics Cases

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Challenges: Muon Decays!

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

12/08/2022

8

Muon Ionization Cooling (MICE)

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

12/08/2022

 \mathbf{O}

LEMMA new scheme in brief arXiv:1905.05747v2 [physics.acc-ph]

- e⁺ for first fill produced by Main e⁺ source (MPS) and accelerated to 5 GeV for damping in a 5 GeV Damping Ring (DR)
- Acceleration to 45 GeV in a SC Linac or ERL and storage of 1000 e⁺ bunches in a Positron Ring (PR)
- Extraction of e⁺ bunches to one or more muon production lines, while produced muons are accumulated in two AR and a muon bunch is "built" by several passages through the targets, to be then delivered to the fast acceleration chain
- Re-injection and damping in the PR @45 GeV of the spent e⁺ beam to save on the number of needed e⁺, the MPS and a possible γ-embedded source will provide the refilling of lost e⁺. Other option: send e⁺ back to DR (through decelerating ERL) for damping and top-up

The beam-induced background simulation

Beam-induced background Studies at $\sqrt{s} = 1.5 \text{ TeV}$

Contributions form μ decays |z| > 25 m become negligible for all background species but Bethe-Heitler muons

Secondary and tertiary particles have low momentum and different arrival time in the IP.

13

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Outline

10+ TeV Muon Collider: basics

Dream Machine: no rivals

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

12/08/2022

15

MuC is also a Vector Boson Machine

VBF dominates well above threshold due to logarithmic growth with E_{CM}

Longitudinal polarizations play a key role, making an extraordinary laboratory for EWSB

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

12/08/2022

17

WIMP Dark Matter

Compelling, simple, predictive explanation for thermal, cold dark matter

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Our Approach: work on the "nightmare" scenario

Consider the following "Minimal Dark Matter"*:

Mo (color	Therm. target	
$(1,\!2,\!1/2)$	Dirac	1.1 TeV
$(1,\!3,\!0)$	Majorana	2.8 TeV
$(1,\!3,\!\epsilon)$	Dirac	2.0 TeV
$(1,\!5,\!0)$	Majorana	11 TeV
$(1,5,\epsilon)$	Dirac	6.6 TeV
$(1,\!7,\!0)$	Majorana	23 TeV
$(1,7,\epsilon)$	Dirac	16 TeV

"Nightmare":

- High thermal targets
 - 23 TeV for 7-plet Majarona
- Minimal signatures
 - Only missing energy

Additional considerations:

- Doublet → "Higgsino"
- Triplet \rightarrow "Wino"
- Use "epsilon" notation to indicate Dirac case
- Even-plet requires non-zero Y (and additional splitting to suppress direct detection)
- Perturbative Unitarity
- Summonfeld and bound-state effect

 $<\sigma_{\chi\bar{\chi}\to VV}v>\simeq \frac{g_2^4 n^4 + 16Y^4 g_1^4 + 8g_2^2 g_1^2 Y^2 n^2}{64\pi M_{\chi}^2 g_{\chi}}$ 12/08/2022 19

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Basic Pheno Considerations

"non-trivial" to consider muon collider reaches

- Minimal signature
 - Mass splitting O(few hundred MeV)
 - Decay products soft
 - Transition between states fast (<mm for most of the cases)
- Missing ET (at LHC) → Missing Mass (at MuC)
- The interplay between different channels:
 - DY-type dominance but large background
 - VBF-type log-growth but limited available energy
- Photon initial state process important
 - Needs to use photon PDF or Weizsacker-Williams approximation
 - Hacked Madgraph to implement
 - Additional divergences often-appear
- Beam induced background (BIB)
 - Affects detector coverage
 - Affects photon, muon threshold
 - Affects disappearing track considerations

Missing Mass signature:

- Simple and inclusive (hence also most conservative)
- Mono-photon
- VBF-dimuon
- Mono-muon

Disappearing track signature:

- Exclusive but challenging
- Most useful for Wino and Higgsinos
- Great potential

 $\sqrt{s} = 3, \ 6, \ 10, \ 14, \ 30 \ \text{and} \ 100 \ \text{TeV}$

 $\mathcal{L} = 1, 4, 10, 20, 90, \text{ and } 1000 \text{ ab}^{-1}$

BNL HET Seminar

Zhen Liu

Mono-Photon

All combinations of components of the EW multiplet are included, so-long as they respect the underlying gauge symmetries

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Mono-photon

Missing mass:

• Sharp kinematic features

Physics @ High E MuC

- Signal-background separation
- Signal parameter determination

BNL HET Seminar

Zhen Liu

Signal-background ratio 10⁻³ At lepton colliders systematics controlled to this level should be achievable but requires theory & experimental work

Unique Mono-Muon Channel

Apparent "Charge Violation" channel (very different from the LHC)

Signature: Energetic mono muon

Muon pairs \rightarrow muon + missing mass

One charge is missed due to the soft (nonreconstructable) decays of the charged states

Unique and powerful channel for low-rate channels.

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Disappearing Tracks: next to minimal signatures

- Only useful for searches using charge 1 states
- Still, all higher charged states will cascade back to charge 1 states promptly
- Use all the production rates of charged states
- Mono-photon+disappearing tracks
- Beam Induced Background

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Minimal transverse displacement

- Only use the central tracks, |eta|<1.5
- Current design have first layer of pixel detector at 3cm (new discussion about 2cm)
- We assume at least two-hits can be measured at 5cm
- Show both pair reconstruction or single reconstruction results
- Requiring 50 signal events for discovery

$$d_T^{\min} = 5 ext{ cm with } |\eta_{\chi}| < 1.5$$
 $\epsilon_{\chi}(\cos heta, \gamma, d_T^{\min}) = \exp\left(rac{-d_T^{\min}}{eta_T \gamma c au}
ight)$

BNL HET Seminar

Zhen Liu

$(\sqrt{s} = 3, 6, 10, 14, 30, 100 \text{ TeV})$

Another EW BSM example: Heavy Neutral Leptons

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

12/08/2022

27

5000

10⁴

 $\nu_{\mu}(k_2)$

 $\bar{N}_{\mu}(k_1$

 $\mu^{-}(p_1)$

 $\mu^{+}(p_2)$

e+e= 242~2536eV

200 f

Physics @ High E MuC

150 million Aligns

[7](147eV

50 25

3 ab-1

BNL HET Seminar

1 million dissis

Zhen Liu

12/08/2022

Riggs

125 GeV

22 pb X 65%

5020

28

Lots of open questions

How would the width, mass, signal strength fit scale in various scenarios?

- Change of Luminosity (expecting some nonlinearities from the beam energy spread);
- Lineshape scanning steps
- Lineshape scanning range
- Inclusion of more channels

The convolution of various effects are highly non-trivial. So new studies will help understand better:

- 125 MuC Higgs physics
- Robustness of the width fit
- Allowing future studies on systematics

We made attempt to address these in our recent study, J. de Blas, Jiayin Gu, ZL, <u>2203.04324</u>

We initially worked on Higgs width alone T. Han, ZL, <u>1210.7803</u>

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Scanning Range & Steps

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Individual Channel Precision Let's check precision with ~1/4 on-shell statistics (with different bkg)

Channel	Rate	Signal	Background	P	recision	[%]
$\mu^+\mu^- \to h \to X$	[pb]	Events	Events	Cut &	Count	Binned
	[-]		Results for	$5/20~{\rm fb}^-$	1	
$bar{b}$	13	19000/77000	45000/180000	1.0/0.51		0.97/0.49
$car{c}$	0.63	2300/9200	43000/170000	24/12		23/12
gg	1.8	5400/22000	$260000/10^6$	11/5.5		11/5.3
$ au_{ m had}^+ au_{ m had}^-$	0.58	1400/5600	19000/76000	10/5.1	68/34	18/21
$ au_{ m had}^+ au_{ m lept}^-$	0.63	1500/6100	18000/71000	9.1/4.5	0.07 0.4	4. 0/ 2. 4
$\gamma\gamma$	0.05	150/605	180000/730000	280/140		190/94
$2\ell 2q \ (\ell=e,\mu)$	0.05	130/530	1200/4800	28/14		
$2\nu 2j$	0.16	450/1800	320/1300	6.1/3.1	5.8/2.9	
$2e2\nu^{\ddagger}$	0.005	8/33	0/1	35/18	,	
$2\mu 2 u^{\ddagger}$	0.005	9/35	0/1	34/17		
$e u\mu u$	0.11	320/1300	9/35	5.7/2.8		
$\ell \nu \tau_{\rm had} \nu \ (\ell = e, \mu)$	0.14	330/1300	8/32	5.6/2.8		
$\ell \nu j j \ (\ell = e, \mu)$	1.4	3800/15000	88/350	1.6/0.82		
$ au_{ m had} u jj$	0.45	1000/4000	20/79	3.2/1.6	1.3/0.67	
$2e2 u^{\dagger}$	0.06	160/660	86/340	9.6/4.8		
$2\mu 2 u^{\dagger}$	0.06	160/650	76/310	9.5/4.7		
$2 au_{ m had} 2 u^{\dagger}$	0.023	46/180	24/97	18/9.1		
$4j(j \neq b)$	2.3	3400/14000	51000/210000	6.8/3.4		

DNL HEI Seimmar

Physics @ High E MuC

Ziien Liu

Now the Model-Independent MuC Width matters!

- This MuC width is a parametrically **new** measurement; the correlations with other parameters are distinctive.
- Complementary to other lepton collider Higgs factories
- Sub-percent muon Yukawa
- Good lumi scaling with couplings
- Excellent improvement when combined with e+e-Higgs factories

BNL HET Seminar

Zhen Liu

Higgs at High-Energy MuC

High Energy Muon Collider provides a vibrant and growing Higgs physics program:

- Baseline Precision couplings
- Higgs Self-coupling
- Top Yukawa through interference
- + many more

Baseline Higgs Measurements

BNL HET Seminar

Production	Decay	$\Delta\sigma/\sigma$ (%)		
1 Iouuction	Decay	$3\mathrm{TeV}$	$10\mathrm{TeV}$	
	bb	0.84	0.24	
	cc	14	4.4	
	gg	4.2	1.2	
	$\tau^+\tau^-$	4.5	1.3	
	$WW^*(jj\ell\nu)$	1.8	0.50	
WW-fusion	$WW^*(4j)$	5.7	1.4	
	$ZZ^*(4\ell)$	48	13	
	$ZZ^*(jj\ell\ell)$	12	3.5	
	$ZZ^*(4j)$	67	16	
	$\gamma\gamma$	7.7	2.1	
	$Z(jj)\gamma$	73	20	
	$\mu^+\mu^-$	43	11	
ZZ-fusion	bb	7.9	2.2	
	$bb, (N_{\mu} \ge 2)$	2.6	0.77	
	$WW^*(4j)$	49	12	
	$WW^*(4j), (N_{\mu} \ge 2)$	17	4.3	
tth	bb	61	53	

Physics @ High E MuC

M. Forslund, P. Meade, <u>2203.09425</u>

See also discussion in Muon Smasher's Guide, <u>2103.14043</u> T. Han, Y. Ma, K.-P. Xie, <u>2007.14300</u>; Costanini, De Lillo, Maltoni, Mantani, Mattelaer, <u>2005.10289</u>

Zhen Liu

12/08/2022

35

Higgs Precision

Fit Result [%]							
	$\mu^+\mu^-$		+ HL-LHC		+ HL-LHC + 250 GeV e^+e^-		
	$3 { m TeV}$	10 TeV	3 TeV	$10 { m TeV}$	3 TeV	$10 { m TeV}$	
κ_W	0.45	0.13	0.39	0.12	0.34	0.11	
κ_Z	3.4	0.94	1.3	0.77	0.12	0.11	
κ_g	2.4	0.67	1.5	0.63	0.76	0.50	
κ_{γ}	3.9	1.1	1.3	0.84	1.2	0.81	
$\kappa_{Z\gamma}$	37	10	37	10	4.1	3.8	
κ_c	7.5	2.3	7.4	2.3	1.8	1.4	
κ_t	35	53	3.2	3.2	3.2	3.2	
κ_b	0.98	0.27	0.88	0.27	0.45	0.23	
κ_{μ}	22	5.4	4.7	3.6	4.1	3.3	
$\kappa_{ au}$	2.5	0.71	1.3	0.64	0.63	0.43	

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Multi-Higgs & Higgs Self-couplings

\sqrt{s} (lumi.)	$3 \text{ TeV} (1 \text{ ab}^{-1})$	6(4)	10 (10)	14 (20)	30 (90)	Comparison
$WWH \ (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050%	0.023%	0.1% [41]
$\Lambda/\sqrt{c_i}$ (TeV)	4.7	7.0	9.0	11	16	(68% C.L.)
$ZZH (\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	0.13% [17]
$\Lambda/\sqrt{c_i}$ (TeV)	2.1	2.6	3.2	3.6	5.3	(95% C.L.)
$WWHH \ (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0.41%	0.20%	5% [36]
$\Lambda/\sqrt{c_i}$ (TeV)	1.1	2.1	3.1	3.8	5.5	(68% C.L.)
$HHH (\Delta \kappa_3)$	25%	10%	5.6%	3.9%	2.0%	5% [22, 23]
$\Lambda/\sqrt{c_i}$ (TeV)	0.49	0.77	1.0	1.2	1.7	(68% C.L.)

Allow %-level trilinear Higgs measurements, and a consistent measurement between gauge boson-Higgs coupling measurements.

T. Han, D. Liu, I. Low, X. Wang, <u>2008.12204</u>

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Multi-Higgs & Higgs Self-couplings

O(1) quartic determination possible. Chiesa, Maltoni, Mantani, Mele, Piccinini, <u>2003.13628</u>

Correlated measurements of trilinear and quartic couplings reveals deep information about EFT and EWPT.

e.g, Huang, Joglekar, Wagner, 1512.00068, Falkowski, Gonzalez-Alonso, Grejio, Marzocca, M. Son, 1609.06312, Chang, Luty, 1902.05556,+Abu-Ajamieh, M. Chen, 2009.11293; DiHiggs review 1910.00012

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Top Yukawa (in an interesting way)

Fit Result [%]							
	$\mu^+\mu^-$		+ HL-LHC		+ HL-LHC + 250 GeV e^+e^-		
	$3 { m TeV}$	$10 { m TeV}$	3 TeV 10 TeV		3 TeV	$10 { m TeV}$	
κ_W	0.45	0.13	0.39	0.12	0.34	0.11	
κ_Z	3.4	0.94	1.3	0.77	0.12	0.11	
κ_g	2.4	0.67	1.5	0.63	0.76	0.50	
κ_{γ}	3.9	1.1	1.3	0.84	1.2	0.81	
$\kappa_{Z\gamma}$	37	10	37	10	4.1	3.8	
κ_c	7.5	2.3	7.4	2.3	1.8	1.4	
κ_t	35	53	3.2	3.2	3.2	3.2	
κ_b	0.98	0.27	0.88	0.27	0.45	0.23	
κ_{μ}	22	5.4	4.7	3.6	4.1	3.3	
$\kappa_{ au}$	2.5	0.71	1.3	0.64	0.63	0.43	

Physics @ High E MuC

BNL HET Seminar

Zhen Liu

Measuring Top Yukawa

> **K.F. Lyu**, ZL, **I. Mahbub**, in progress

Physics @ High E MuC

BNL HET Seminar

Zhen Liu