
Sensor R&D: Status and Plan

	m: 1 .:	0 21 12				
	Time resolution	Spatial resolution				
		Exactly one strip		Two strip		Effective
Name	High gain	Resolution	Eff.	Resolution	Eff.	Resolution
Unit	ps	μm	-	μm	-	μm
BNL 5-200	30 ± 1	61 ± 1	35%	12 ± 1	65%	37 ± 1
BNL 10-100	35 ± 1	69 ± 1	23%	19 ± 1	77%	37 ± 1
BNL 10-200	32 ± 1	82 ± 1	43%	18 ± 1	57%	55 ± 1
BNL 10-300	36 ± 1	83 ± 1	51%	16 ± 1	49%	60 ± 1
BNL 25-200	51 ± 1	128 ± 1	82%	31 ± 1	18%	117 ± 1

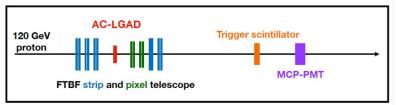


Figure 7: Picture (top) and diagram (bottom) of the FTBF silicon telescope and reference instruments used to characterize AC-LGAD performance. The telescope comprises five pairs of orthogonal strip layers and two pairs of pixel layers, for a total of up to 14 hits per track.

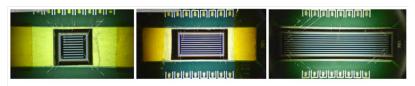


Figure 8: Three AC-LGAD strip sensors wire-bonded on Fermilab test board and tested at FTBF: BNL 5-200 (left), BNL 10-200 (middle) and BNL 25-200 (right). See text for details.

https://wiki.bnl.gov/conferences/index.php/ProjectRandDFY23

- Status: achieved ~30 ps timing and ~25 micron spatial resolutions from 500 micron pitch pixel sensors, and ~35 ps timing and ~35 micron spatial resolutions from 1 cm long, 500 micron pitch strip sensors
- Plan: move to thinner active Si thickness to improve timing resolution, study different doping concentration, pitch and electrode width to further optimize performance.

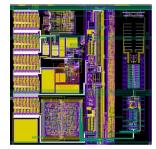
Frontend ASIC R&D: Status and Plan

EICROC0: first ASIC prototype that is compatible with EIC Roman Pot requirements and can read out an AC-LGAD with 500 micron pitch and 20 ps time resolution.

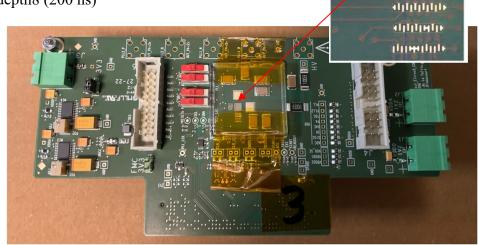
alititititite

submitted in 3/2022, received in 7/2022 by OMEGA/CEA-Irfu/AGH/IJCLab

4 x 4 channels with 500x500 um2 pitch


Preamp, discri. taken from ATLAS ALTIROC

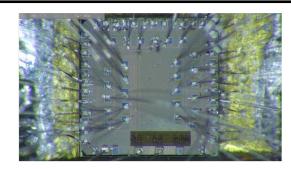
I2C slow control taken from CMS HGCROC

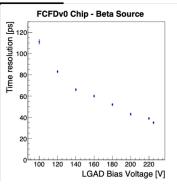

TDC (TOA) adapted by CEA-Saclay/Irfu

ADC (40 MHz) adapted to 8bits by AGH Krakow

Digital readout: FIFO depth8 (200 ns)

EICROC0, 1 channel implantation

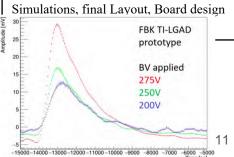




Frontend ASIC R&D: Status and Plan

FCFDv0 (Fermilab CFD v0):

- Adapt the Constant Fraction Discriminator (CFD)
 principle in a pixel when a CFD is paired with a
 TDC, one time measurement gives the final answer.
- Charge injection and beta source tests consistent with expectation. Tests with beam are planned

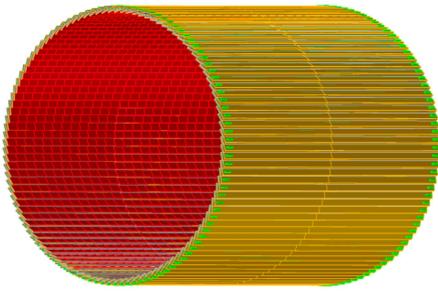


ASIC effort by UC Santa Cruz:

Institution		Technology	Output	# of Chan	Funding	Specific Goals	Status
INFN Torino	FAST	110 nm CMOS	Discrim. & TDC	20	INFN	Large Capacitance TDC	Testing
NALU Scientific	HPSoC	65 nm CMOS	Waveform	5 (Prototype) > 81 (Final)	DoE SBIR	Digital back-end	Testing
Anadyne Inc	ASRO C	Si-Ge BiCMOS	Discrim.	16	DoE SBIR	Low Power	Simulations, final Layout, Board design

Plan:

 Continue the ASIC prototyping efforts utilizing the design and experience in ASICs for fast-timing detectors from ATLAS and CMS, and investigate common ASIC design and development for RP/B0 and ToF

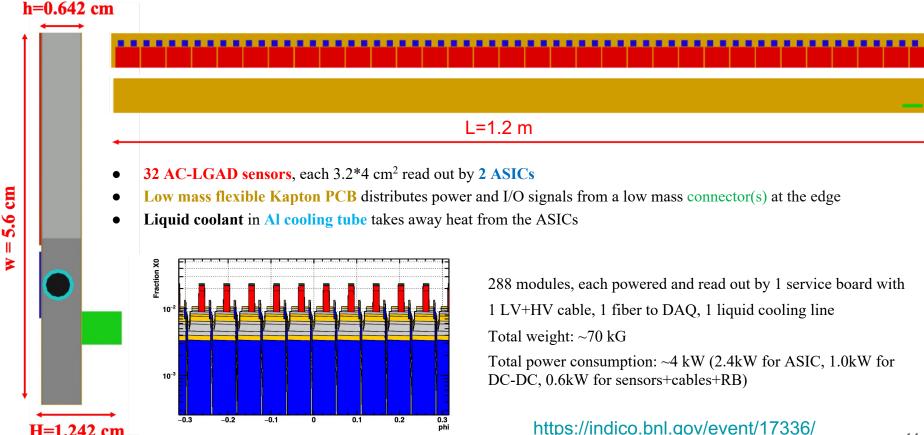


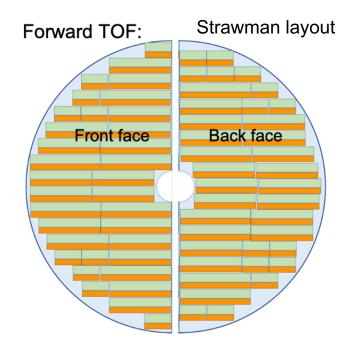
TOF-PID Report: Integration

ePIC GD/I meeting November 7, 2022

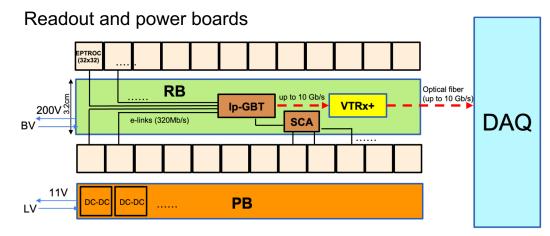
Barrel TOF Layout and Integration

Barrel TOF CAD Drawing


STAR Intermediate Silicon Tracker

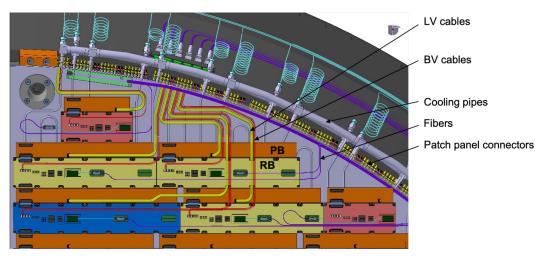


Barrel TOF Layout and Integration


Endcap TOF Layout and Integration

Sensors+ASICs: matrix of 32x32 pixels,

"Clam shells" or DEEs:


- Convenient for installation/maintenance
- Each is patched by TOF modules (one or more types) on both faces

More details: https://indico.bnl.gov/event/17336/

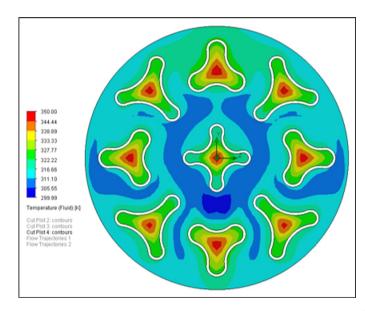
Endcap TOF layout and integration

Service routing, similar to the CMS design

Services (baseline)	Forward	Backward
Sensors/ASICs	8704	4608
LV cables	424	248
HV cables	424	248
Fibers	212	124

<10cm in z thickness

Planned/proposed R&Ds to optimize baseline design to minimize power consumption and develop effective cooling scheme


Power Consumption	Forward	Backward
500x500 micron ² (baseline)	13kW	6kW
800x800 micron ² (possible alternative)	6kW	3kW

More details: https://indico.bnl.gov/event/17336/

Support and Cooling Development

Need realistic engineering design for AC-LGAD systems for CD2/3a

- Minimal material budget, appropriate cooling system for stable operation, heat load impact on nearby sub-detectors
- Requested R&D resources in eRD112 and PED request
- Purdue/NCKU: lightweight support and Barrel mechanical design
 - Studies based on CF composites/PEEK
 - Extensive experience with lightweight composite tracking detector supports from CMS tracking upgrade projects
- ORNL: TOF Endcap mechanical design
 - Integrated water cooling system
 - Wealth of experience from similar projects
- Engineers have experience with FEA,
 Solidworks and ANSYS Comp. Fluid. Dyn.

On-detector Electronics Development

R&D proposal (eRD109) includes collaborative AC-LGAD readout electronics work from BNL, Rice, ORNL. Further PED request through DAQ group is anticipated

- BNL: Readout board reference prototype
 - Precision clock distribution
 - EICROC readout studies
- Rice: Readout board implementation for TOF endcap, power board
 - Based on CMS-ETL service hybrids
- ORNL: Readout R&D for barrel implementation
 - Targeting kapton flex design for minimal material budget
 - Integration into barrel mechanics

Experienced electrical engineers

Summary and Outlook

- Geometry implementation in EPIC software simulation stack done
- (Re-)starting PID + tracking performance impact analyses
 - Beam background + noise impacts to be studied
- Work towards engineering design towards CD2/3a underway with funding requests submitted to project: eRD112, eRD109, PED
 - R&D on sensor, ASIC, sensor/ASIC integration, lightweight support and electronics
 - PED on mechanical support and cooling (and electronics in the near future)
 - Involving multiple institutes with wide range of experience