
the eSTARlight Monte Carlo

Presented at the "MC4EIC Workshop, Nov. 16-18, 2022

- Photoproduction at UPCs and at an EIC
- Shape evolution in gold nuclei with Q²
- The eSTARlight Monte Carlo
 - Current Status
 - Future plans
- Conclusions

eSTARlight

- Monte Carlo for photoproduction and electroproduction of vector mesons at an EIC
 - ◆ Here, photoproduction is Q² < 1 GeV², while electroproduction is Q²>1 GeV²
- An experimentally-oriented fast, complete, reasonably accurate model of vector meson production, not a sophisticated theoretical calculation
 - Experimental projections, detector simulations....
 - ♦ Electron (or positron) -> γ^* -> vector meson -> final state
 - Vector meson polarization and decay angular distribution
 - Based on data where possible, phenomenology elsewhere
 - *Some extrapolations required
- Easily extensible
- User interface similar to STARlight (for ultra-peripheral collisions), but underlying algorithms are very different

Initial states

- Electron (or positron)
- Protons
- Light ions (Z<7) are modelled with a Gaussian distribution</p>
- Heavy ions are modelled with a Woods-Saxon distribution
- For protons, lead, gold, zirconium, ruthenium, xenon or copper parameters are from electron scattering data
 - No neutron halo
- For other nuclei, radii are determined from simple formulae
- Nuclear properties are easy to change if desired
 - ◆ Coming soon: individual models for light nuclei
- Arbitrary beam energies...

Final states

- ρ , ω , ϕ , ρ ' (i. e. $\pi\pi\pi\pi$), ρ + direct $\pi\pi$, with interference
 - ◆ Simple states decayed in STARlight
 - Complex final states via PYTHIA interface
 - ◆ Easily extensible
 - **New:** $\omega -> \pi^+ p p 0$, w-> p0g
- Incoherent photonuclear interactions w/ DPMJET
 - Real photon approximation
- eSTARlight tracks outgoing electron & proton/nucleon
- eSTARlight outputs photon 4-vector
- Relatively new: eSTARlight output in HEPMC3 format

Electronuclear interactions

$$\sigma(e+X\to e+X+V.M.) = \int dQ^2 \int dE_{\gamma} \frac{dN_{\gamma}(E_{\gamma},Q^2)}{dE_{\gamma}dQ^2} \sigma_{\gamma X}(W,Q^2)$$

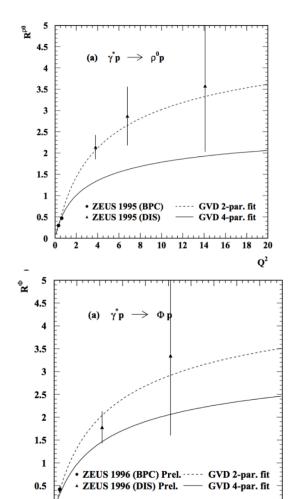
- Convolution of photon flux from electron with cross-section; both depend on Q²
- Photon flux depends on virtuality

$$\begin{split} \frac{d^2N}{d(Q^2)dE_{\gamma}} = & \frac{\alpha}{\pi} \frac{1}{E_{\gamma}|Q^2|} \left[1 - \frac{E_{\gamma}}{E_e} + \frac{1}{2} \left(\frac{E_{\gamma}}{E_e} \right)^2 - \right. \\ & \left. \left(1 - \frac{E_{\gamma}}{E_e} \right) \left| \frac{Q_{min}^2}{Q^2} \right| \right] \end{split}$$

Cross-sections

Parameterized from HERA data

$$\sigma_{\gamma p} = \left(\frac{1}{1 + Q^2/M_v^2}\right)^n \sigma_{\gamma p}(W) \quad \sigma_{\gamma p}(W) = \sigma_P \cdot W^{\epsilon} + \sigma_M \cdot W^{\eta}$$

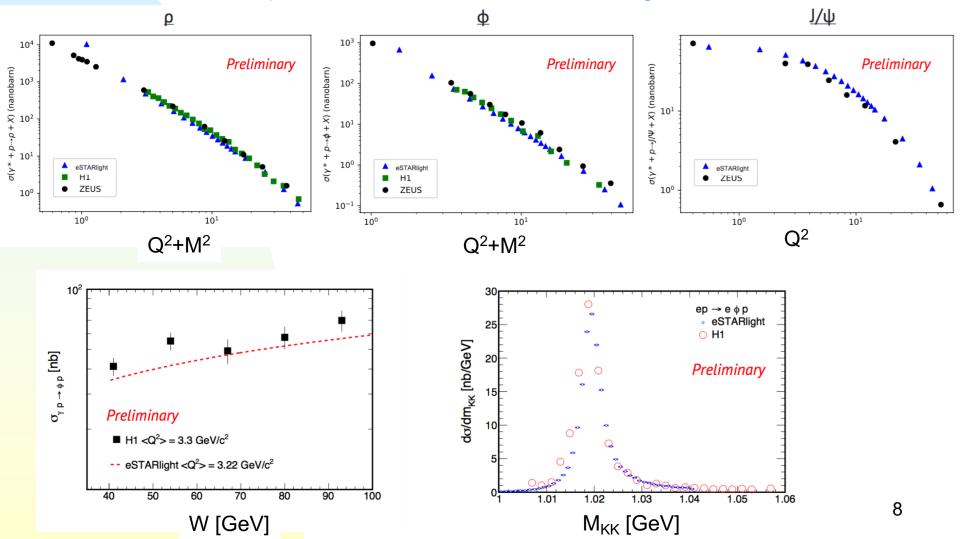

- $n=c_1+c_2(Q^2+M_V^2)$
- Pomeron & Reggeon (meson) exchange

Meson	c_1	$c_2 (10^{-2} \text{GeV}^{-2})$
ρ	2.09 ± 0.10	0.73 ± 0.18
ϕ	2.15 ± 0.17	0.74 ± 0.46
J/ψ	2.36 ± 0.20	0.29 ± 0.43

- ◆ Reggeon exchange matters at an EIC
- Q² dependence included via a power-law
 - Data on power n is not available for all mesons; we use the 'closest' meson
- σ_{γp} parameterized from HERA data
 - ◆ Pomeron exchange + Reggeon exchange
- More accurate parameterization used for heavy mesons, to better model near-threshold production

Vector meson decays

- Vector mesons retain the spin of the incident photon
- For Q² -> 0, s-channel helicity conservation means that the vector mesons are transversely polarized to the beam direction
 - ◆ As Q² rises, longitudinal polarization rises
- The Q² dependence of the transverse:longitudinal polarization ratio is not well known
- Parameterize HERA data in terms of spin-matrix elements:
- Only known for some mesons; use most 'similar' meson where needed



$$R_v = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

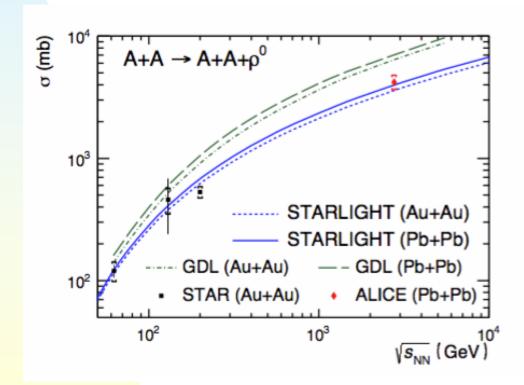
Comparison with HERA data

HERA shows γ*p cross-sections

- $\sigma_{\gamma p} = \frac{\int dE_{\gamma} \int dQ^2 \frac{d^2 N}{dE_{\gamma} d(Q^2)} \sigma_{\gamma p}(E_{\gamma}, Q^2)}{\int dE_{\gamma} \int dQ^2 \frac{d^2 N}{dE_{\gamma} d(Q^2)}}$
- Remove the photon flux from the eSTARlight calculations

From γp to γA

With a quantum Glauber calculation, generalized vector meson dominance and the optical theorem:


$$\sigma_{tot}(VA) = \int d^2b \left[2 \cdot \left(1 - e^{-\sigma_{tot}(Vp)T_{AA}(b)/2} \right) \right]$$

$$\sigma(\gamma A \to VA) = \left. \frac{d\sigma(\gamma A \to VA)}{dt} \right|_{t=0} \int_{t_{min}}^{\infty} dt |F(t)|^2$$

- For heavy mesons (small dipoles), $d\sigma/dt|_{t=0} \sim A^2$
- For the ρ^0 (smallish dipoles), $d\sigma/dt|_{t=0} \sim A^{4/3}$

Glauber calculations

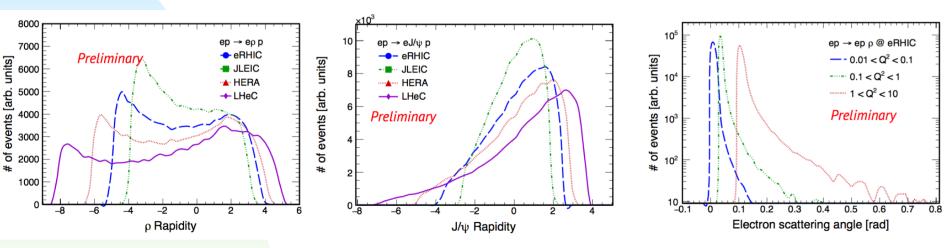
- quantum Glauber calculation does not match STAR and ALICE UPC data; a classical Glauber does well.
 - Can add a correction for nuclear inelastic shadowing
 - eSTARlight currently allows classical Glauber as an option

Rates at EICs

Assumed integrated luminosity 10 fb⁻¹/A

		Photo-production ($Q^2 < 1 \text{ GeV}^2$)					Electro-production (Q ² > 1 GeV ²)				
		ρ	ф	J/ψ	ψ'	Υ	ρ	ф	J/ψ	ψ'	Υ
eRHIC	ер	50 G	2.3 G	85 M	14 M	140 K	140 M	17 M	5.7 M	1.2 M	24 K
	eAu	44 G	2.8 G	100 M	16 M	60 K	37 M	<i>5.6</i> M	3.9 M	960 K	10 K
JLEIC	ер	3/G	1.6 G	39 M	6.0 M	45 K	100 M	12 M	2./ M	550 K	/.9 K
	ePb	28 G	1.6 G	28 M	3.9 M	-	22 M	3.2 M	1.2 M	250 K	-
LHeC	ер	100 G	5.6 G	470 M	78 M	1.2 M	260 M	37 M	29 M	6.3 M	180 K
	ePb	110 G	8.2 G	720 M	140 M	2.0 M	100 M	16 M	27 M	7.2 M	250 K

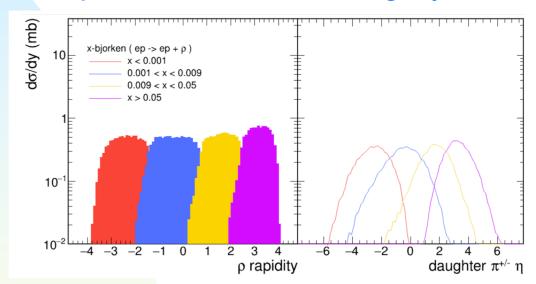
Photoproduction


- ♦ High rates (>10⁹/year) for light mesons
- ◆ Good rates (>10⁶/year) for ccbar
- ◆ Usable rates for Upsilon

Electroproduction

◆ Rates from ~<1% of photoproduction (light mesons), rising to 15% of photoproduction rates for the Upsilon</p>

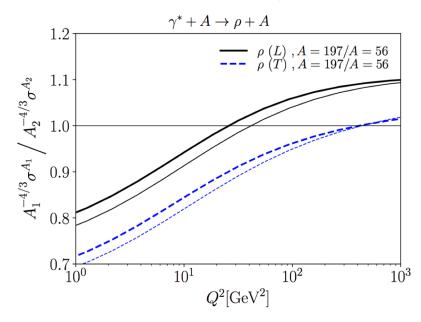
Rapidity and Angular distributions


- Vector meson production over a wide rapidity range
 - N. b. unscaled distributions here

- ρ⁰ 'double peak' is due to Reggeon exchange (near threshold)
 and Pomeron exchange at large k/rapidity
- If pure Pomeron exchange is important need to go to large rapidity, or use φ or J/ψ, which are not produced via Reggeon exchange
- Electrons scattering angle is small (no surprise)

Photon energy/Bjorken-x vs. rapidity

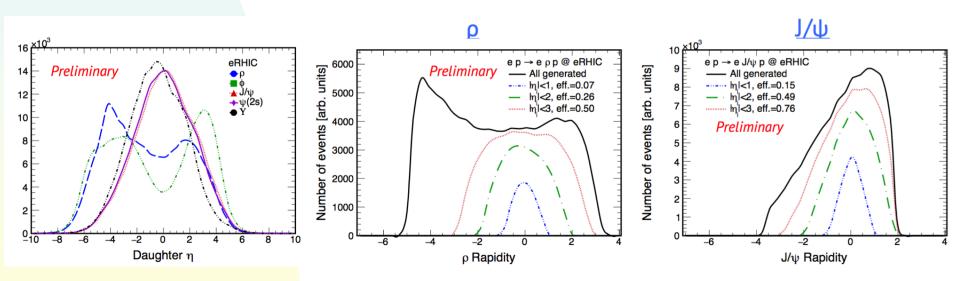
- For photoproduction, $k = M_V/2 \ln(y)$
 - ◆ Electroproduction shifts this slightly to the right


- Rapidity range widest for light mesons
 - ◆ Want to detect rho in range |y|<4</p>
 - Pions extend to pseudorapidity |η|<6
 - Need correct polarization to get pseudorapidity range
- Shift threshold to mid-rapidity by lowering beam energy

Cross-section vs. A & Q²: shadowing

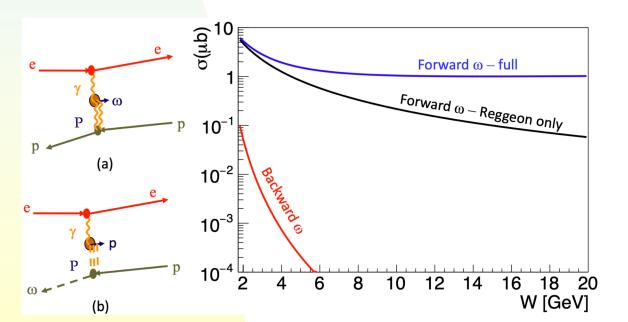
- Without shadowing (i. e. for small dipoles), the cross-section scales as A^{4/3}
 - ◆ A² for forward scattering cross-section, A -2/3 for phase space
 - ♦ With shadowing, the growth in σ with A is smaller
- eSTARlight reproduces this well

eSTARlight 1.1 Preliminary 0.6 Q² [GeV²]


Mantysaari & Venugopalan

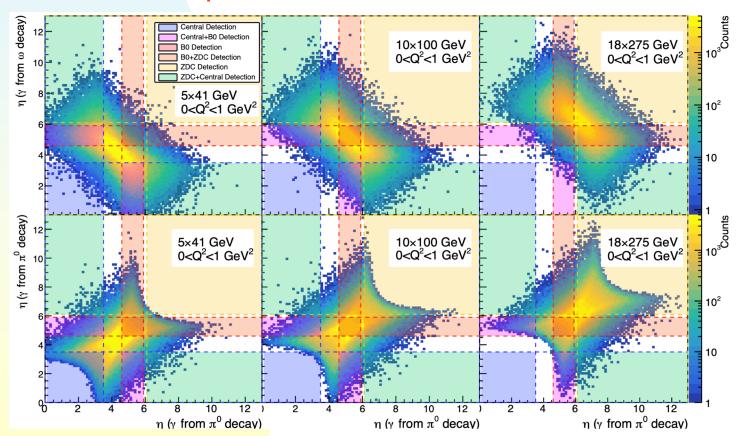
Phys.Lett. B781 (2018) 664-671

Final state particle distributions


- The vector meson daughter particles generally follow the rapidity distribution of their vector meson parents
- The final state matters: VM -> spin 0 spin (e. g. $\pi\pi$) has a very different angular distribution from VM -> spin ½ spin ½
 - Clebsch Gordon coefficients

- Large detector acceptance is key to high acceptance.
 - ◆ Otherwise, we waste beam

One recent addition: backward production


- In backward production, |t| is large, but |u| is small
- Transports baryon number over several units of rapidity
 - Baryon transport
 - Vector meson takes most of baryon momentum
- Fixed-target backward ω data parametrized with a Regge model
 - ◆ Usual dσ/dt~exp(-bt) swapped for dσ/du ~ exp(-ct)

D. Cebra *et al.*, Phys. Rev. C **106**, 015204 (2022)

Backward production at the EIC

- ω-> π^0 γ and ρ -> $\pi^+\pi^-$ simulations in ATHENA framework
 - ◆ (and, soon, we hope, in EPIC)
- Forward detectors are critical
- Detection best at less than full beam energies
- Rates are ample; heavier VM should also be in reach

eSTARlight at: http://github.com/eic/estarlight

- Moved from hepforge
- C++ code
 - Should be compliant with C++ 17 (we hope)
 - Issues with new compilers are fixed as they are reported
- Dependencies
 - ◆ PYTHIA8 (for complex decays)
 - ◆ DPMJET3 for arbitrary eA photoproduction (w/Q²=0)
 - ♦ HEPMC3 if HEPMC3 output desired
- Easy to download and install
- Please try it, and provide feedback

Future eSTARlight plans

- Additional mesons
- Charge exchange reactions γp->X+n
- Exotica?
- We welcome interested parties as co-developers
 - ◆ Spin effects?
 - ◆ GPDs?

Conclusions

- eSTARlight simulates photoproduction and electroproduction of vector mesons in ep/eA collisions
- It is designed as a tool for experimentalists, so it is based on parameterizations of HERA data, supplemented with theoretical input (such as a Glauber calculation to go from ep to eA collisions).
 - It includes a wide range of vector mesons with a wide range of decays.
 - ♦ It accounts for the photon polarization, and that polarization's effect on the vector meson decays.
- We welcome both feedback and co-development efforts to add features to the code.
- The code is available on github. Please try it and let us know what you think.

Implication for physics program

- Can measure rates and d_σ/dy for all mesons, in at least a couple of Q² bins
- Tomographic studies should be possible for all light mesons and the J/ψ
- Good data for spin-dependence studies
- ψ(3770), ψ(4040) should be accessible, even after accounting for small branching ratios to specific final states
- A host of ρ ', ω ', and ϕ ', etc. states should be accessible
 - For meson spectroscopy, and to probe nucleons with different types of dipoles
- One could also look for exotica, and/or study rare light vector meson decays