# RHICf <br> Beam Use Request 1 

Takashi Sako<br>(ISEE/KMI, Nagoya University)<br>for the RHICf Collaboration

## Outline

- RHICf physics targets
- Cross section measurement for CR physics
- Single-spin asymmetry of forward particles
- RHICf experiment
- Progress since last PAC - discussions with STAR -
- Beam Use Request for RUN17
- Expected statistics
- Backup scenario with vertical polarization
- Summary


## Cross section measurements for CR physics



Air shower analysis relies on MC simulation assuming a hadronic interaction model


Cross section of forward $\pi^{0}$ production measured by LHCf at $\mathrm{Vs}=7 \mathrm{TeV}$

- RHICf uses one of the LHCf detectors
- RHIC configuration allows almost same $x_{F}-p_{T}$ coverage to the LHCf $7 T e V$ data ( $x_{F}=2 p_{Z} / v s$ )
- Vs dependence in forward hadron production can be understood with a wide Vs reach


## Single-Spin Asymmetry in forward neutrons

- First discovered at RHIC IP12 experiment


$A_{N} \equiv \frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}}=\frac{\sigma_{L}^{\uparrow}-\sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow}+\sigma_{R}^{\uparrow}}$
$A_{N}=\frac{1}{P} \cdot \varepsilon_{N}$


## SSA of forward neutron production




- PHENIX measurements suggest $p_{T}$ scaling of $A_{N}$
- Low $p_{T}$ was limited by the 1 cm position resolution of the detector. Neutrons hit near zero degree was not used in the analysis.


## Theoretical explanation

- Pion- $\mathrm{a}_{1}$ interference: results
- The data agree well with independence of energy
- The asymmetry has a sensitivity to presence of different mechanisms, e.g. Reggeon exchanges with spin-non-flip amplitude, even if they are small amplitudes

$$
A_{N} \approx \frac{2 \operatorname{Im}\left(f g^{*}\right)}{|f|^{2}+|g|^{2}}
$$

$f$ : spin non-flip amplitude
$g$ : spin flip amplitude


FIG. 1: (Color online) Single transverse spin asymmetry $A_{N}$ in the reaction $p p \rightarrow n X$, measured at $\sqrt{s}=62,200,500 \mathrm{GeV}$ [1] (preliminary data). The asterisks show the result of our calculation, Eq. (38), which was done point by point, since each experimental point has a specific value of $z$ (see Table I).

Kopeliovich, Potashnikova, Schmidt, Soffer: Phys. Rev. D 84 (2011) 114012.

## SSA of forward neutron production



1. Measurement at $p_{T}<0.3 \mathrm{GeV}$ in a single V

- possible by RHICf because of its 1 mm position resolution for neutrons

2. Measurement at $\mathrm{p}_{\mathrm{T}}>0.3 \mathrm{GeV}$ to know $\mathrm{A}_{\mathrm{N}}$ evolution

- possible by RHICf because of its wide $\mathrm{p}_{\mathrm{T}}$ coverage required for cross section measurements


## SSA of forward neutron production


2. Measurement at $p_{T}>0.3 \mathrm{GeV}$ to know $A_{N}$ evolution

- possible by RHICf because of its wide $\mathrm{p}_{\mathrm{T}}$ coverage required for cross section measurements


## RHICf detector acceptance



Widest and gapless $p_{T}$ coverage is realized by moving the vertical detector position.

Radial polarization (vertical asymmetry) maximizes the advantage of this wide $p_{T}$ coverage

## RHICf detector acceptance



Widest and gapless $p_{T}$ coverage is realized by moving the vertical detector position.

Radial polarization (vertical asymmetry) maximizes the advantage of this wide $\mathrm{p}_{\text {I }}$ coverage

## Progress since last PAC - agreements with STAR -

- Installation of the RHICf detector in front of ZDC at West side
- Electronics/cables setup in the tunnel and detector hall, usage of DAQ room and control room
- STAR/RHICf common event recording
- Custom board to receive STAR event token at RHICf is ready
- Ongoing discussions
- Online analysis of radial polarization (detail in later)
- Detector installation timing and procedure
- Event matching
- MOU between STAR and RHICf was exchanged in Jan-2016
- RHICf detector arrived at the STAR workshop last month


## Beam Use Request for RUN17

| Parameter | Value |
| :--- | :---: |
| Beam energy (GeV) | 255 |
| Beam intensity | $2 \times 10^{11}$ |
| (protons per bunch) |  |
| Number of colliding bunch | 111 |
| Number of non-colliding bunch | 9 |
| Beam emittance (mm mrad) | 20 |
| $\beta^{*}(\mathrm{~m})$ | 10 |
| Luminosity $\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$ | $2.0 \times 10^{31}$ |
| Polarization direction | radial |
| Polarization amplitude | $0.4-0.5$ |
| $\beta^{*}$ setup time | 1 day |
| Radial polarization setup time | 1 day |
| Data taking time | 2 days |

- Beam setup 2 days
- $\beta^{*}=10 \mathrm{~m}$ to keep the beams parallel ( $\sigma=1.5 \mathrm{~mm}$ at detector) 1day
- Radial polarization to access $\mathrm{p}_{\top}>0.3 \mathrm{GeV}$ in SSA measurement 0.3-1 day [not more than 24 hours in case of any difficulty]
- Physics operation 2 days
- 12 hours data taking for minimum success both in cross section and SSA measurements in parallel
- Backup
- we hope 24 hours data taking is assured only when we have (recoverable) trouble
- Timing
- To be discussed, but not very early phase
- Hope around May 2017


## Expected statistics in 12 hours



Neutron


Neutron SSA

| $p_{T}(\mathrm{GeV})$ | $\mathrm{N}\left(\times 10^{3}\right)$ | $\delta \mathrm{A}$ |
| :---: | :---: | :---: |
| $0.0-0.1$ | 2,310 | 0.0013 |
| $0.1-0.2$ | 2,570 | 0.0012 |
| $0.2-0.3$ | 1,710 | 0.0015 |
| $0.3-0.4$ | 2,190 | 0.0014 |
| $0.4-0.5$ | 1,210 | 0.0018 |
| $0.5-0.6$ | 1,130 | 0.0019 |
| $0.6-0.7$ | 402 | 0.0032 |
| $0.7-0.8$ | 260 | 0.0039 |
| $0.8-1.2$ | 104 | 0.0062 |

- After 12 hours, high threshold energy and EM enhanced trigger to increase statistics in high energy photons and $\pi^{0}$


## If using vertical pol...



Large calorimeter will be placed to cover zero degree

$$
\mathrm{p}_{\mathrm{T}, \max }=1.3 \mathrm{mrad} \times 255 \mathrm{GeV}=0.33 \mathrm{GeV}
$$

We lose $p_{T}>0.3 \mathrm{GeV}$, but still important to see $\mathrm{p}_{\mathrm{T}}<0.3 \mathrm{GeV}$


## Summary

- RHICf measures
- Cross sections of forward particle production for CR physics
- Single-Spin Asymmetry of forward particles
in parallel under the beam condition below
- Beam use request [4 days in total]
- Not in early RUN17, to be discussed
- 255 GeV proton beams
- $\beta^{*}=10 \mathrm{~m}$, requires 1 day setup time
- Radial polarization, requires another 0.3-1 day [max 1 day]
- 2 days for physics
- 12 hours for minimum success for 2 physics in parallel
- Only in case of recoverable trouble, 24 hours of data taking to be assured even after 4 days

We thank C-AD and STAR members for fruitful discussions

## Backup

## RHICf Physics targets



1. Cross section measurement for $C R$ physics

2. Single-Spin Asymmetry (SSA)

- $p_{T}=0-0.3 \mathrm{GeV}$ coverage with single V
- $\mathrm{p}_{\mathrm{T}}>0.3 \mathrm{GeV}$ coverage

Measurements up to $p_{T} \sim 1 \mathrm{GeV}$ is a key for both targets 1. to compare with the LHCf results
2. to improve the previous results by PHENIX

## RHICf Experiment



10 cm wide gap in front of ZDC


Double tower structure
$92 \mathrm{~mm}^{w} \times 280 \mathrm{~mm}^{\text {' }} \times 610 \mathrm{~mm}^{\mathrm{h}}$ package
( $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ and $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ )

## Vertical pol vs. Radial pol

Best configuration in V-pol = option for CR measurements


Best configuration for R-pol
= identical to CR measurements


## $\mathrm{I}_{\text {in }}-\mathrm{I}_{\text {out }}$ calculation by C-AD for radial polarization



## Radial polarization setup

- This is not in the regular RHIC program
- Key issues

1. Fast feedback to C-AD for current tuning

- STAR ZDC count rates provide real time determination of asymmetry and azimuthal angle [next slide]
- Under the luminosity of RHICf condition $\delta \mathrm{A}=0.003$ and $\delta \phi$ $=3^{\circ}$ in 10 min

2. (short) Reference measurement with vertical polarization
3. Tolerances defined by RHICf

- Residual polarization in longitudinal direction; $25^{\circ}$ residual reduces A by 10\%
- Azimuthal direction of polarization; $20^{\circ}$ still keeps maximum asymmetry in the RHICf large calorimeter
- RHICf does not request more than 24 hours for setup in case of any trouble, in this case RHICf concentrates on SSA measurement at $p_{T}<0.3 \mathrm{GeV}$ with vertical polarization



## Setup Procedure

A) Reference data taking [2 hours including analysis]

1. 1 hour data taking with vertical pol to obtain reference $\mathrm{A}_{v}$ with $\delta \mathrm{A}=0.001$
B) Confirmation of radial polarization [2-6 hours depending on iteration]
2. Radial pol first trial, 1 hour data taking to determine $\mathrm{A}_{\mathrm{r}, 1}$ with $\delta \mathrm{A}=0.001$
3. If $A_{v}-A_{r, 1}>0.004, C-A D$ checks current setup and repeat from B-1
C) Fine tuning of polarization direction $\phi_{0}$ [6 hours]
4. 10 min data taking with $4-5$ sets of current to determine $\phi_{0,2}, \phi_{0,3}, \phi_{0,4, \ldots}$ with $\delta \phi=3^{\circ}$
5. Find best two sets of current those result $\phi_{0} \sim \pi / 2$
6. Define the best current and take 1 hour of confirmation data
A)

B)


C1,2) $\uparrow^{\phi=\pi / 2}$


C3)


## STAR online polarization analysis

Online polarimetry (ZDC) for Fill: 17178 *
STAR rotator scan March 6, 72013


Under RHICf luminosity ( $\beta^{*}$ )
$\delta \mathrm{A}=0.003$
$\delta \phi=3^{\circ}$
in 10 min


## Scaling in interaction model


$\pi^{0}$ cross section by EPOS-LHC model
$20 \%$ reduction in cross section is predicted from 510 GeV to 7 TeV

## Scaling measured by LHCf



- $8 \%$ error including statistical and systematic in 7 TeV result
- This will be reduced to $\sim 5 \%$ soon by correcting $T$ dependence in PMT response
- RHICf will have similar total error

