RHICf Beam Use Request 1

Takashi Sako

(ISEE/KMI, Nagoya University)

for the RHICf Collaboration

Outline

- RHICf physics targets
 - Cross section measurement for CR physics
 - Single-spin asymmetry of forward particles
- RHICf experiment
- Progress since last PAC discussions with STAR –
- Beam Use Request for RUN17
 - Expected statistics
 - Backup scenario with vertical polarization
- Summary

Cross section measurements for CR physics

Air shower analysis relies on MC simulation assuming a hadronic interaction model

Cross section of forward π^0 production measured by LHCf at $\sqrt{s}=7$ TeV

- RHICf uses one of the LHCf detectors
- RHIC configuration allows almost same x_F-p_T coverage to the LHCf 7TeV data ($x_F=2p_Z/Vs$)
- Vs dependence in forward hadron production can be understood with a wide Vs reach

Single-Spin Asymmetry in forward neutrons

• First discovered at RHIC IP12 experiment

SSA of forward neutron production

- PHENIX measurements suggest p_T scaling of A_N
- Low p_T was limited by the <u>1cm position resolution</u> of the detector. Neutrons hit near zero degree was not used in the analysis.

Acceptance on the detector plane

Theoretical explanation

- Pion-a₁ interference: results
 - The data agree well with independence of energy
- The asymmetry has a sensitivity to presence of different mechanisms, e.g. Reggeon exchanges with spin-non-flip amplitude, even if they are small amplitudes

$$A_N \approx \frac{2 \operatorname{Im}(fg^*)}{\left|f\right|^2 + \left|g\right|^2}$$

f : spin non-flip amplitude *g* : spin flip amplitude

FIG. 1: (Color online) Single transverse spin asymmetry A_N in the reaction $pp \to nX$, measured at $\sqrt{s} = 62$, 200, 500 GeV [1] (preliminary data). The asterisks show the result of our calculation, Eq. (38), which was done point by point, since each experimental point has a specific value of z (see Table I).

Kopeliovich, Potashnikova, Schmidt, Soffer: Phys. Rev. D 84 (2011) 114012.

SSA of forward neutron production

- 1. Measurement at $p_T < 0.3 \text{GeV}$ in a single \sqrt{s}
 - possible by RHICf because of its <u>1mm position resolution</u> for neutrons
- 2. Measurement at $p_T > 0.3 \text{ GeV}$ to know A_N evolution
 - possible by RHICf because of its wide p_T coverage required for cross section measurements

SSA of forward neutron production

- 1. Measurement at $p_T < 0.3 \text{GeV}$ in a single \sqrt{s}
 - possible by RHICf because of its 1mm position resolution for neutrons
- 2. Measurement at $p_T > 0.3 \text{ GeV}$ to know A_N evolution
 - possible by RHICf because of its wide p_T coverage required for cross section measurements

Compact double calorimeters (20mmx20mm and 40mmx40mm)

RHICf detector acceptance

RHICf 18.0m from IP

100

- Crossing angle (half): 0.0 urad Detector position: 16.6 mm

RHICf 18.0m from IP

100

- Crossing angle (half): 0.0 urad Detector position: 0.0 mm

Widest and gapless p_T coverage is realized by moving the vertical detector position.

Radial polarization (vertical asymmetry) maximizes the advantage of this wide p_T coverage $_9$

Compact double calorimeters (20mmx20mm and 40mmx40mm)

RHICf detector acceptance

Widest and gapless p_T coverage is realized by moving the vertical detector position.

Radial polarization (vertical asymmetry) maximizes the advantage of this wide p_T coverage 10

Progress since last PAC - agreements with STAR -

- Installation of the RHICf detector in front of ZDC at West side
- Electronics/cables setup in the tunnel and detector hall, usage of DAQ room and control room
- STAR/RHICf common event recording
 - Custom board to receive STAR event token at RHICf is ready
- Ongoing discussions
 - Online analysis of radial polarization (detail in later)
 - Detector installation timing and procedure
 - Event matching
- MOU between STAR and RHICf was exchanged in Jan-2016
- RHICf detector arrived at the STAR workshop last month

Beam Use Request for RUN17

Parameter	Value
Beam energy (GeV)	255
Beam intensity	2×10^{11}
(protons per bunch)	
Number of colliding bunch	111
Number of non-colliding bunch	9
Beam emittance (mm mrad)	20
β^* (m)	$\fbox{10}$
Luminosity $(cm^{-2}s^{-1})$	2.0×10^{31}
Polarization direction	radial
Polarization amplitude	0.4 - 0.5
β^* setup time	1 day
Radial polarization setup time	$1 \mathrm{day}$
Data taking time	2 days

- Beam setup 2 days
 - β^* =10m to keep the beams parallel (σ =1.5mm at detector) 1day
 - Radial polarization to access p_T>0.3GeV in SSA measurement 0.3-1 day [not more than 24 hours in case of any difficulty]
- Physics operation 2 days
 - 12 hours data taking for minimum success both in cross section and SSA measurements in parallel
- Backup
 - we hope 24 hours data taking is assured only when we have (recoverable) trouble
- Timing
 - To be discussed, but not very early phase
 - Hope around May 2017

Expected statistics in 12 hours

- A
 tr
 0.0GeV<pr/>
 -0.2GeV
 0.0GeV<pr/>
 -0.2GeV
 0.6GeV<pr/>
 -0.6GeV
 0.6GeV<pr/>
 -0.6GeV
 0.6GeV<pr/>
 -0.6GeV
 0.6GeV
 <
 - After 12 hours, high threshold energy and EM enhanced trigger to increase statistics in high energy photons and π^0

If using vertical pol...

Large calorimeter will be placed to cover zero degree $p_{T,max} = 1.3mrad \times 255GeV = 0.33 GeV$

We lose p_T >0.3GeV, but still important to see p_T <0.3GeV

Summary

- RHICf measures
 - Cross sections of forward particle production for CR physics
 - Single-Spin Asymmetry of forward particles in parallel under the beam condition below
- Beam use request [4 days in total]
 - Not in early RUN17, to be discussed
 - 255GeV proton beams
 - β^* =10m, requires 1 day setup time
 - Radial polarization, requires another 0.3-1 day [max 1 day]
 - 2 days for physics
 - 12 hours for minimum success for 2 physics in parallel
 - Only in case of recoverable trouble, 24 hours of data taking to be assured even after 4 days

We thank C-AD and STAR members for fruitful discussions

Backup

RHICf Physics targets

1. Cross section measurement for CR physics

- 2. Single-Spin Asymmetry (SSA)
- $p_T = 0 0.3$ GeV coverage with single \sqrt{s}
- p_T >0.3GeV coverage

Measurements up to $p_T \sim 1 \text{GeV}$ is a key for both targets

- 1. to compare with the LHCf results
- 2. to improve the previous results by PHENIX

RHICf Experiment

10cm wide gap in front of ZDC

Double tower structure (20mmx20mm and 40mmx40mm)

92mm^wx280mm^lx610mm^h package

Vertical pol vs. Radial pol

I_{in}-I_{out} calculation by C-AD for radial polarization

Radial polarization setup

- This is not in the regular RHIC program
- Key issues
 - 1. Fast feedback to C-AD for current tuning
 - STAR ZDC count rates provide real time determination of asymmetry and azimuthal angle [next slide]
 - Under the luminosity of RHICf condition δ A=0.003 and $\delta\phi$ =3° in 10 min
 - 2. (short) Reference measurement with vertical polarization
 - 3. Tolerances defined by RHICf
 - Residual polarization in longitudinal direction; 25° residual reduces A by 10%
 - Azimuthal direction of polarization; 20° still keeps maximum asymmetry in the RHICf large calorimeter
 - RHICf does not request more than 24 hours for setup in case of any trouble, in this case RHICf concentrates on SSA measurement at p_T<0.3GeV with vertical polarization

Setup Procedure

- A) Reference data taking [2 hours including analysis]
 - 1. 1 hour data taking with vertical pol to obtain reference A_V with δA =0.001
- B) Confirmation of radial polarization [2-6 hours depending on iteration]
 - 1. Radial pol first trial, 1 hour data taking to determine $A_{r,1}$ with δA =0.001
 - 2. If $A_v A_{r,1} > 0.004$, C-AD checks current setup and repeat from B-1
- C) Fine tuning of polarization direction ϕ_0 [6 hours]
 - 1. 10min data taking with 4-5 sets of current to determine $\phi_{0,2}, \phi_{0,3}, \phi_{0,4,\dots}$ with $\delta \phi$ =3°
 - 2. Find best two sets of current those result $\phi_0 \sim \pi/2$
 - 3. Define the best current and take 1 hour of confirmation data

STAR online polarization analysis

Online polarimetry (ZDC) for Fill: 17178 ‡

STAR rotator scan March 6, 7 2013

Fill=17178 (runs of the first day are offset by +850 if data taking extended past midnight) 0.08 Yellow beam +++++ Blue bean +++++ 0.06 Asymmetry observed asymetry ×…×…× x ¥ 0.04 ŧ Т 2 3 6 7 Т L 4 5 0.02 ¥́¥ ¥ X ¥ × ¥ ¥ ¥ 🕏 🕸 🕸 × Ю +5 I inner 0 -5 0 0 +5 -5 [A] I outer 0 0 0 +5 -5 +5 -5 [A] -0.02 14065980 4065985 14065990 14065995 14066000 14066005 14066010 14066015 14066020

Under RHICf luminosity (β^*)

 $\delta A=0.003$ $\delta \phi=3^{\circ}$

in 10 min

23

Scaling in interaction model

 π^0 cross section by EPOS-LHC model

20% reduction in cross section is predicted from 510GeV to 7TeV

Scaling measured by LHCf

- 8% error including statistical and systematic in 7TeV result
- This will be reduced to \sim 5% soon by correcting T dependence in PMT response
- RHICf will have similar total error