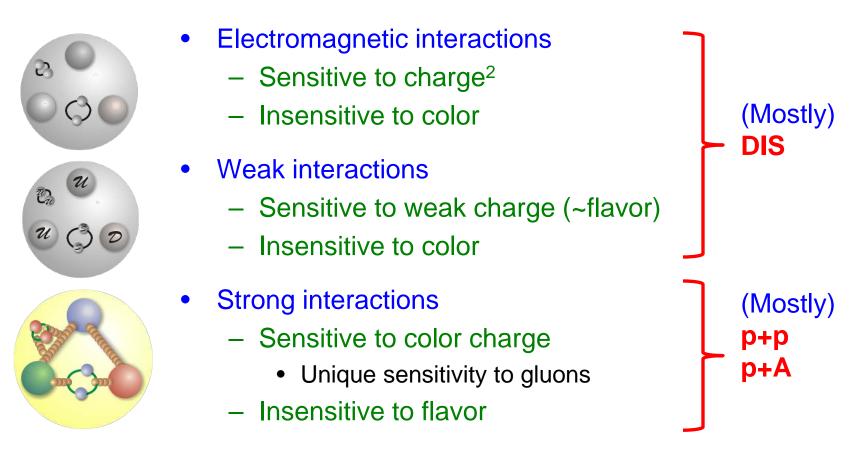

RHIC Cold QCD Plan for 2017 to 2023 A Portal to the EIC



Carl Gagliardi Texas A&M University

Outline

- Introduction
- A few recent achievements
- Opportunities with polarized protons
- Opportunities with p+A

Complementarity of DIS and p+p/p+A

- Need both for a consistent and complete picture
- Combine DIS and p+p/p+A to explore universality and separate interaction-dependent phenomena from intrinsic properties

A well-proven method

	2000			
$\hat{\mathbf{a}}_{\mathbf{x}}^{1.2}$ $\mathbf{Q}^2 = 10 \ \text{GeV}^2$	Process	Subprocess	Partons	x range
\dot{z} Q ² = 10 GeV ²	$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} X$	$\gamma^* q \rightarrow q$	q, ar q, g	$x \gtrsim 0.01$
	$\ell^{\pm} n/p \rightarrow \ell^{\pm} X$	$\gamma^* d/u \to d/u$	d/u	$x \gtrsim 0.01$
g/10 -	$pp \rightarrow \mu^+ \mu^- X$	$u\bar{u}, d\bar{d} \rightarrow \gamma^*$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$
0.8	$pn/pp \rightarrow \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	\bar{d}/\bar{u}	$0.015 \lesssim x \lesssim 0.35$
	$\nu(\bar{\nu}) N \rightarrow \mu^-(\mu^+) X$	$W^*q \rightarrow q'$	q,ar q	$0.01 \lesssim x \lesssim 0.5$
0.6	$\nu N \rightarrow \mu^- \mu^+ X$	$W^*s \rightarrow c$	8	$0.01 \lesssim x \lesssim 0.2$
	$\bar{\nu} N \rightarrow \mu^+ \mu^- X$	$W^*\bar{s} \rightarrow \bar{c}$	\overline{s}	$0.01 \lesssim x \lesssim 0.2$
	$e^{\pm} p \rightarrow e^{\pm} X$	$\gamma^* q \rightarrow q$	$g,q,ar{q}$	$0.0001 \lesssim x \lesssim 0.1$
0.4	$e^+ p \rightarrow \bar{\nu} X$	$W^+\left\{d,s\right\} \to \left\{u,c\right\}$	d, s	$x \gtrsim 0.01$
	$e^{\pm}p \rightarrow e^{\pm} c\bar{c} X$	$\gamma^* c \to c, \gamma^* g \to c \bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
0.2 s,s d d	$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^*g \rightarrow q\bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
	$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$
	$p\bar{p} \rightarrow (W^{\pm} \rightarrow \ell^{\pm}\nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	$u,d,ar{u},ar{d}$	$x \gtrsim 0.05$
10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 1	$p\bar{p} \rightarrow (Z \rightarrow \ell^+ \ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$
X				

MSTW 2008

- The key role of hadronic collision data to determine the unpolarized PDFs of the proton has long been exploited
- RHIC provides equally critical data to determine polarized and nuclear PDFs

Primary goals of the plan

- Establish the validity and limits of factorization and universality
 - Essential to separate intrinsic properties of hadrons from interaction-dependent dynamics
 - Requires pushing the envelope beyond just those measurements that have been proven theoretically
 - Particularly important for transverse spin and p+A measurements
 - Requires precision measurements to enable meaningful comparisons between RHIC data and future EIC data
- Perform key measurements with a broader range of probes and wider kinematic coverage than will be possible at the EIC alone
 - Significantly enhance the impact and interpretation of the future EIC data

The plan in one table

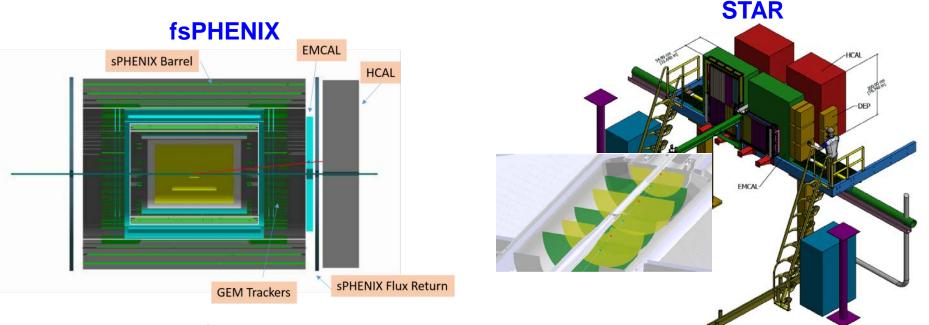
	Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A_N^{DY} : Postshower to FMS@STAR
				Transversity, Collins FF, linear pol Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_s-2\phi_h)} A_{UT}^{\sin(\phi_s-\phi_h)} $ modula- tions of h^* in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	None
				First look on GPD Eg	A_{UT} for J/ Ψ in UPC	None
Sched	2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
uled R				properties and nature of the diffractive exchange in p+p collisions.	A_N for diffractive events	None
Scheduled RHIC running	2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	<i>R_{p.4u}</i> (DY):Yes Forward instrum.
				Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^* in jets, nuclear FF	None
				Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
	2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAI} : direct photons and DY	<i>R_{pAl}</i> (DY): Yes Forward instrum
				A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^* in jets, nuclear FF	None
				A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
Pote	202X	p [†] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$ and	Yes Forward instrum.
Potential future running				quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton- proton collisions	mid-rapidity	None
	202X	pp @ 510	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A _{LL} for jets, di-jets, h/γ-jets	Yes
			10 weeks		at $\eta > 1$	Forward instrum.

The plan in one table

In the baseline RHIC run plan

1		1 1				
	Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A _N ^{DY} : Postshower to FMS@STAR
				Transversity, Collins FF, linear pol Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_s-2\phi_h)} A_{UT}^{\sin(\phi_s-\phi_h)}$ modula- tions of h^* in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	None
				First look on GPD Eg	A_{UT} for J/ Ψ in UPC	None
Sched	2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
uled R				properties and nature of the diffractive exchange in p+p collisions.	A_N for diffractive events	None
Scheduled RHIC running	2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	<i>R_{pAu}</i> (DY):Yes Forward instrum.
nning				Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^* in jets, nuclear FF	None
				Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
	2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAI} direct photons and DY	<i>R_{pAl}</i> (DY): Yes Forward instrum.
				A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^* in jets, nuclear FF	None
				A-dependence for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum.
Pote	202X	p'p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$ and	Yes Forward instrum.
Potential future running				quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton- proton collisions	mid-rapidity	None
ure	202X	<i>p</i> p@ 510	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets	Yes
			10 weeks		at $\eta > 1$	Forward instrum.

The plan in one table


In the baseline RHIC run plan

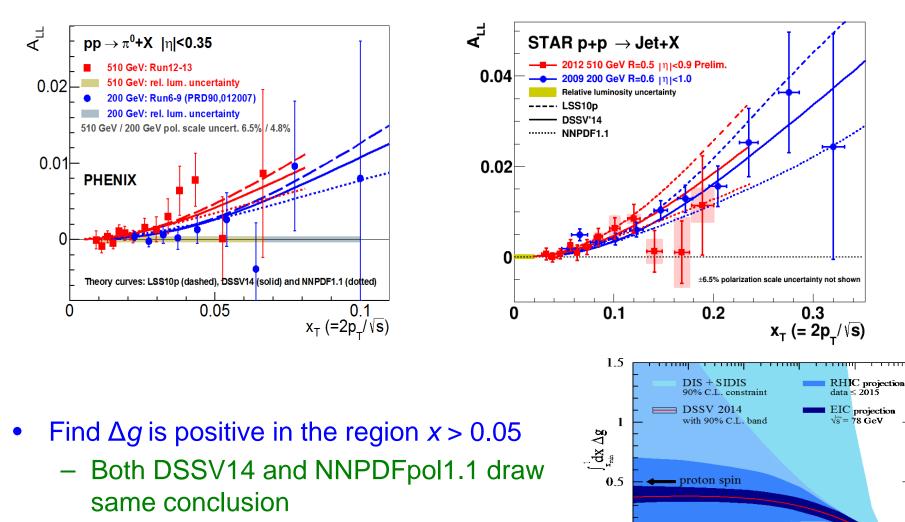
	Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
1	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A _N ^{DY} : Postshower to FMS@STAR
				Transversity, Collins FF, linear pol Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_s-2\phi_h)} A_{UT}^{\sin(\phi_s-\phi_h)} $ modula- tions of h^* in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	None
				First look on GPD Eg	A_{UT} for J/ Ψ in UPC	None
Sched	2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
uled R				properties and nature of the diffractive exchange in p+p collisions.	A_N for diffractive events	None
Scheduled RHIC running	2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	R _{p.41} (DY):Yes Forward instrum.
nning				Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^* in jets, nuclear FF	None
				Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
2	2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAI} : direct photons and DY	R _{pAl} (DY): Yes Forward instrum.
				A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^* in jets, nuclear FF	None
				A-dependence for Saturation	Dihadrons, γ -jet, h-jet, diffraction	Yes Forward instrum.
	202X	p'p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$ and	Yes Forward instrum.
Potential future				quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton- proton collisions	mid-rapidity	None
1 2	202X	<i>p</i> p@ 510	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets	Yes
			10 weeks		at n > 1	Forward instrum.

More high-impact science if the opportunity arises

What upgrades are necessary?

- Mid-rapidity
 - Baseline sPHENIX configuration can do those measurements that don't need $\pi / K / p$ separation
 - STAR can do all proposed measurements

Est. cost: \$12M + labor


Est. cost: \$6M

- Forward rapidity:
 - Both sPHENIX and STAR would need additional forward tracking + EM and hadronic calorimetry

Carl Gagliardi - RHIC Cold QCD Plan

A few recent accomplishments

Gluon polarization in the proton

0

-0.5

10

 $O^2 = 10 \text{ GeV}^2$

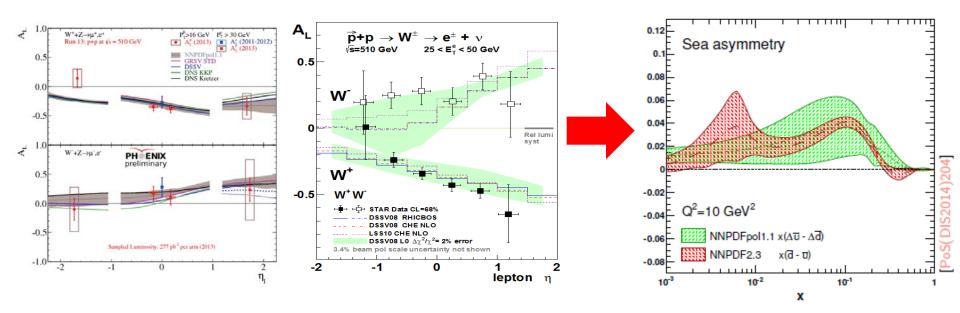
10

 10^{-3}

10⁻²

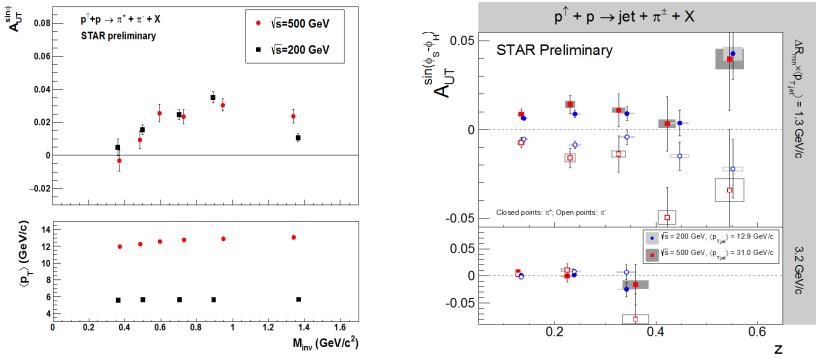
-1

x_{min}


10

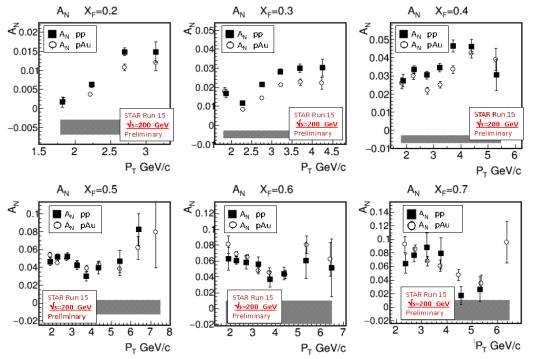
• 2015 LRP: "a significant breakthrough"

Carl Gagliardi – RHIC Cold QCD Plan


10

Anti-quark polarization

- W^{+/-} asymmetries hint at $\Delta \overline{u} > \Delta \overline{d}$
 - This is opposite from the unpolarized distributions
 - Uncertainties will shrink by factor of 2 when all existing data are analyzed


First transversity signals in hadronic collisions

- Significant measurements of transversity convoluted with:
 - Di-hadron interference fragmentation function (IFF)
 - Collins fragmentation function
- Both have similar magnitudes in 200 and 500 GeV pp collisions
- Observations of transversity at very high scales
 - Q² up to 900 GeV² for Collins at 500 GeV
- Complementary results that obey different evolution equations

Carl Gagliardi - RHIC Cold QCD Plan

First results from *polarized* p+Au

- Large transverse single-spin asymmetries for forward inclusive hadron production were an early driver of the RHIC transverse spin program
 - Nearly independent of \sqrt{s} from 5 GeV (ZGS) to 500 GeV (RHIC)
 - At RHIC energies, the unpolarized cross section described by pQCD
 - Various initial and final-state effects have been proposed
- CGC calculations in some of the possible channels predicted that A_N would be suppressed when scattering off a saturated gluon field
 - Preliminary results from 2015 find little suppression

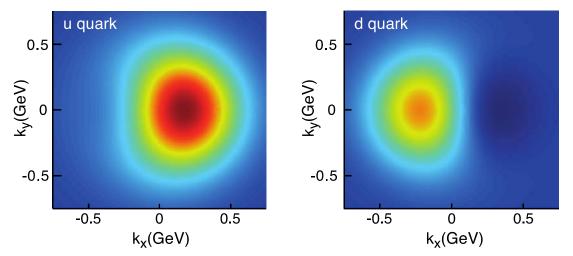
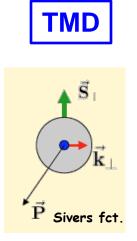
Opportunities with polarized protons

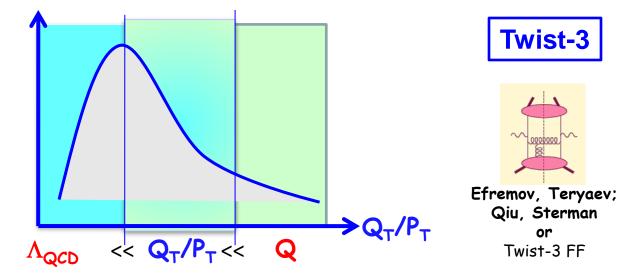
Limited time:

Focus on TMD, Twist-3, and related measurements Diffraction, GPDs and gluon polarization in back-up

Why TMDs?

 $x \ f_1(x, \ k_T, \ S_T)$


 Image the transverse and longitudinal (2+1d) structure of the nucleon and nuclei

– Tomography of the nucleon!

- Access to transverse momenta at non-perturbative scales
 - Probe at the confinement scale
- Exhibit correlations arising from spin-orbit effects
- Close connection to Twist-3 quark-gluon-quark correlations
- Un-integrated gluon density $g(x, Q^2, k_T)$ critical for physics at small x
 - Connection with saturation (CGC)

Initial state: TMDs and Twist-3

Single hard scale: p_{τ}

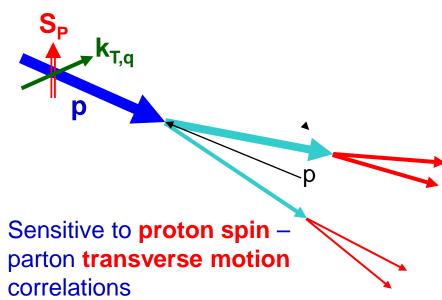
Access the average

 $A_N(\pi^0, \gamma, jet)$

Appropriate for inclusive

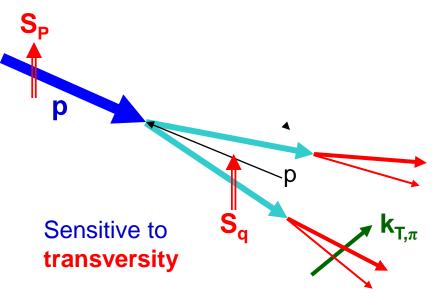
transverse momentum $\langle k_T \rangle$

Requires 2 scales: Hard scale Q^2 Soft scale p_T


SIDIS, Drell-Yan, W/Z, ...

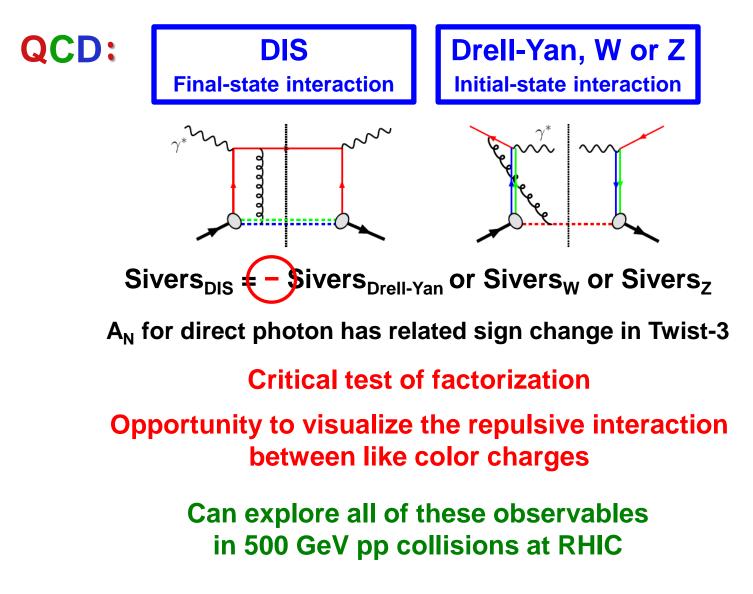
Access the full transverse momentum dynamics k_T

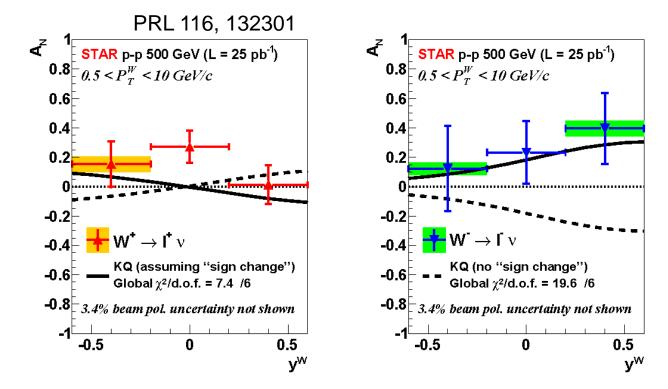
$$-\int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{M} f_{1T}^{\perp q}(x, k_{\perp}^{2})|_{SIDIS} = T_{q,F}(x, x)$$


Separating initial- from final-state effects

Sivers or twist-3 mechanisms:

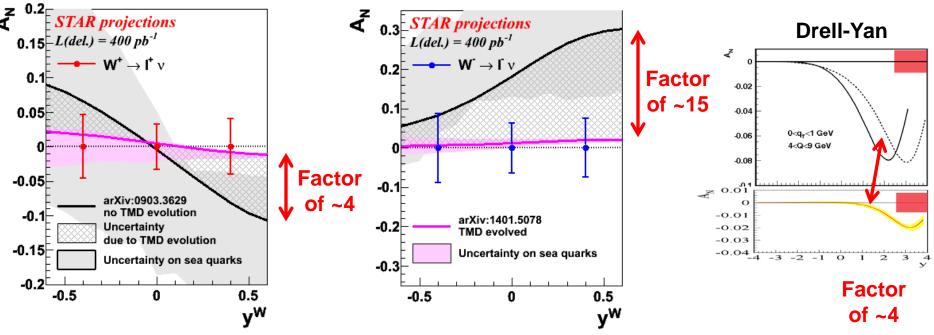
- Signatures:
 - $-A_N$ for jets or direct photons
 - $-A_N$ for W^{+/-}, Z⁰, Drell-Yan
 - A_N for heavy flavor (gluon)
- Sivers NOT universal
 - Sign change from SIDIS to W, Z, and Drell-Yan


Collins or novel FF mechanisms:


- Signatures:
 - Collins effect
 - Interference fragmentation functions (IFF)
 - − A_N for pions → novel FF
- Collins predicted to be universal

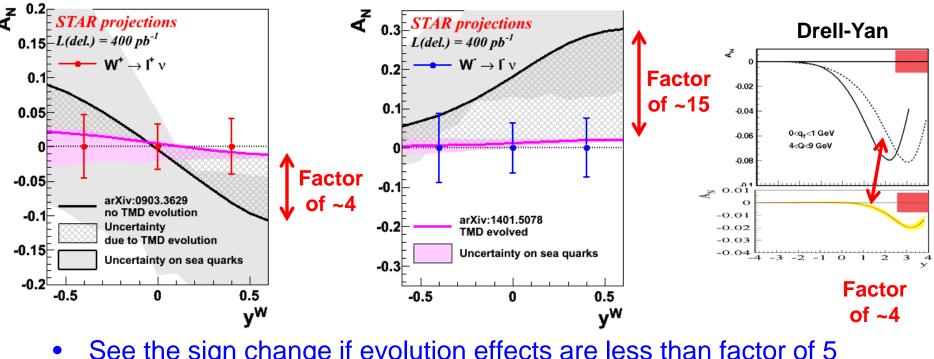
Color interactions in QCD

Controlled non-universality of the Sivers function



A_N for W production

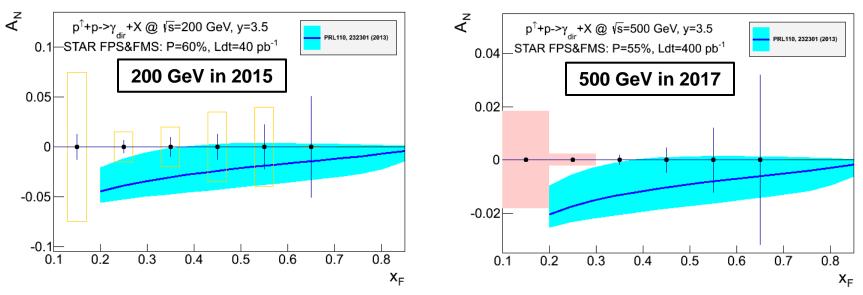
- STAR performed an exploratory measurement of A_N for W production with a small data set recorded in 2011
 - W kinematics fully reconstructed
- Favors sign change if evolution effects are modest
 - TMD evolution is non-perturbative at low k_{\perp} no absolute theory predictions


Definitive measurement in 2017

- See the sign change if evolution effects are less than factor of 5
- Probe anti-quark Sivers function for the first time
- Directly measure the evolution effects
 - Need new data to constrain non-perturbative contribution
 - Access similar observables at comparable *x* but very different Q²
 - W and Z A_N at 500 GeV 2017 RHIC
 - Drell-Yan at 500 GeV
 Irun

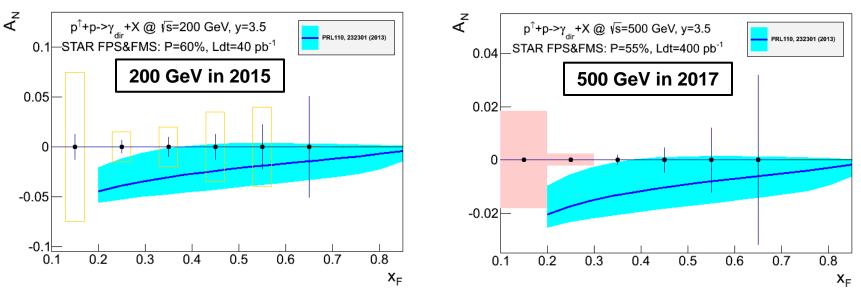
Carl Gagliardi - RHIC Cold QCD Plan

Definitive measurement in 2017

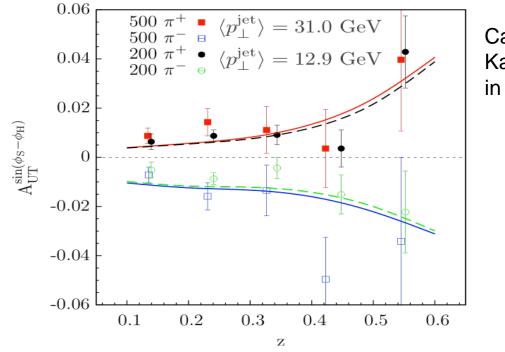


See the sign change if evolution effects are less than factor of 5

Carl Gagliardi – RHIC Cold QCD Plan

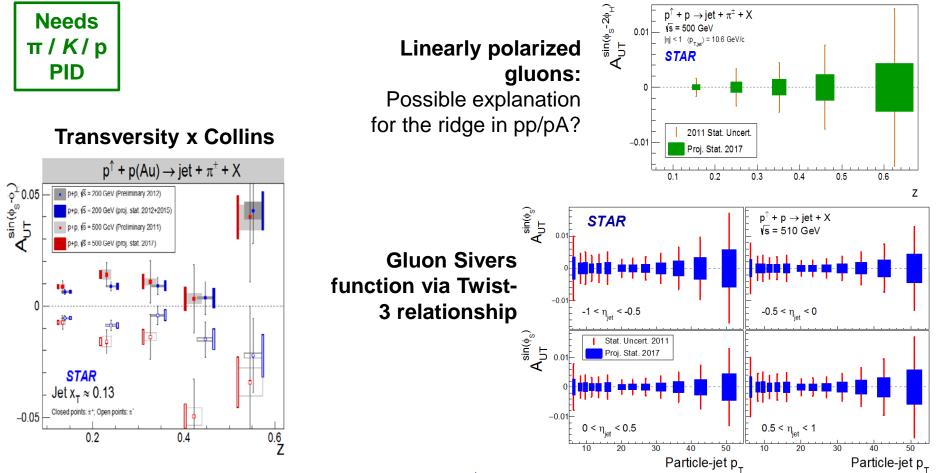

A_N for direct photon

- Sensitive to the sign change in the Twist-3 formalism
- Collinear objects, but more complicated evolution than DGLAP
 - Not sensitive to TMD evolution
- Provides an indirect constraint on the Sivers function via their integral relationship

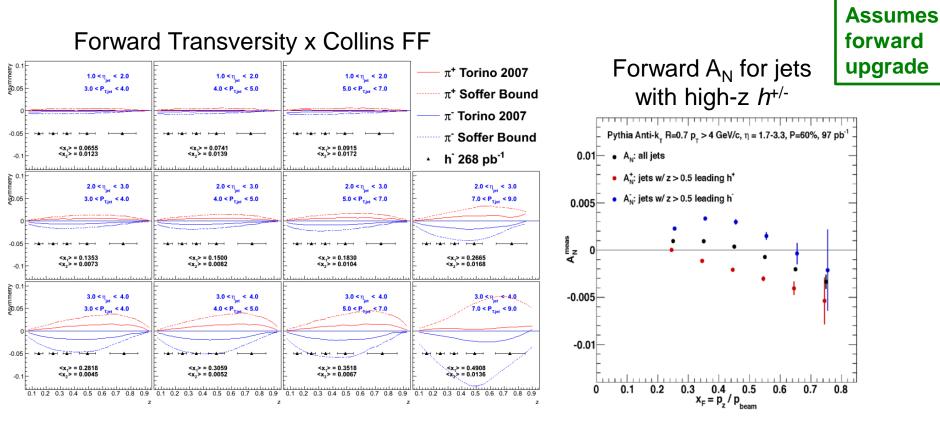

Not a replacement for $A_N(W, Z, DY)$, but an **important complementary piece of the puzzle**

A_N for direct photon

- Sensitive to the sign change in the Twist-3 formalism
- Collinear objects, but more complicated evolutions than DGLAP
 - Not sensitive to TMD evolution
- Provid integra
 Reduce 200 GeV uncertainties by ~3 Precision measurement of Twist-3 evolution
 important complementary piece of the puzzle

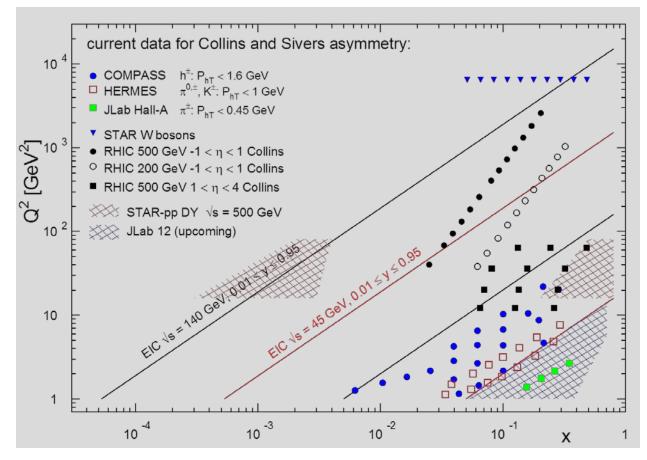

Final state: $\pi^{+/-}$ azimuthal distribution in jets

Calculations from Kang et al, in preparation


- First Collins effect measurements in pp collisions are well described by calculations that convolute the transversity distribution from SIDIS with the Collins FF from e⁺e⁻ collisions
 - Tests the predicted universality of the Collins FF
 - No TMD evolution in this calculation
 - Maybe small?
 - Maybe cancels between numerator and denominator for asymmetries?

Many azimuthal modulations possible

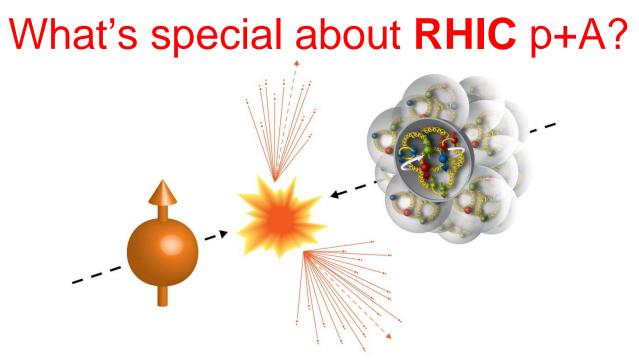
- Precision data at fixed x, different \sqrt{s} ideal to constrain TMD evolution
- Run 17, combined with 2011, '12, and '15 data will provide initial look
- Reduce uncertainties by a further factor of ~3 at 200 GeV in 2023 and ~2 at 500 GeV in 202X


202X: TMDs and Twist-3 at forward rapidity

- 500 GeV Collins effect
 - Access high x (0.05-0.5) at high Q^2 (10-100 GeV²)
 - Strong constraint on the tensor charge
- u- and d-quark enriched jet A_N probes Sivers function via Twist-3 to very high x

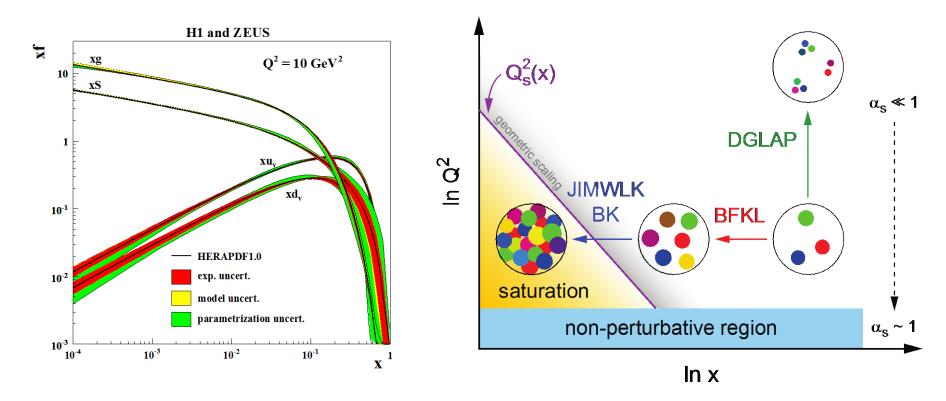
Carl Gagliardi - RHIC Cold QCD Plan

Sivers and Collins coverage at RHIC

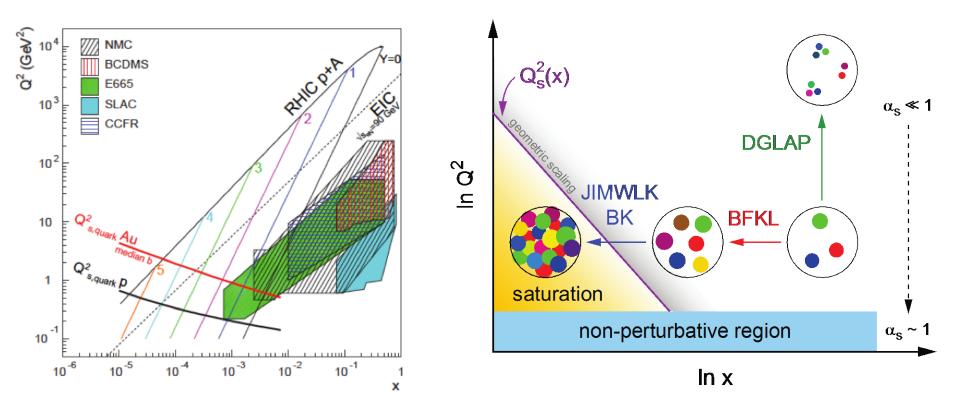


- Kinematics of RHIC
 - Dramatic extension in (x, Q^2) reach before EIC
 - W production probes the highest Q^2 over a wide x range
 - Precision tests of universality when EIC data become available

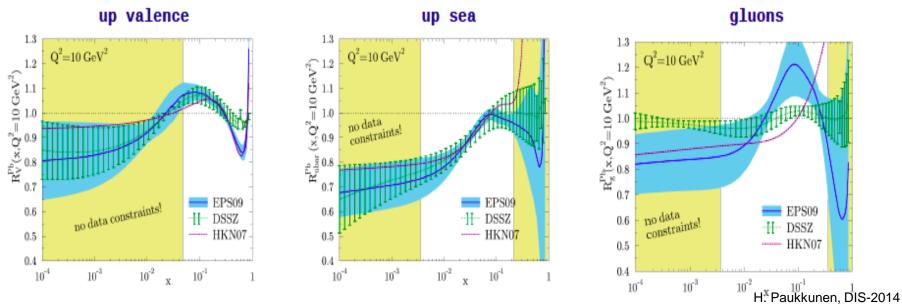
Opportunities with p+A


Headline questions for p+A

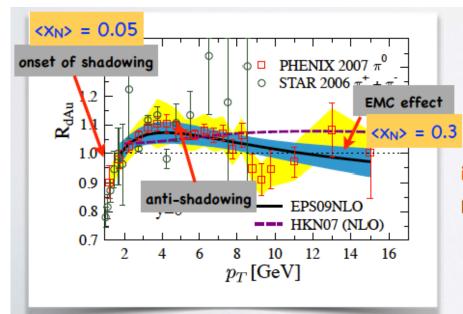
- Can we experimentally find evidence of a novel universal regime of non-linear QCD dynamics in nuclei? Can we describe this dynamics quantitatively?
- What is the role of saturated strong gluon fields, and what are the degrees of freedom in the high gluon density regime?
- What is the fundamental quark-gluon structure of light and heavy nuclei?
- Can a nucleus, serving as a color filter, provide novel insight into the propagation, attenuation, and hadronization of colored quarks and gluons?


- Unique RHIC opportunities:
 - A-scan (Au, Cu, Al, He, d beams have been run; more available)
 - Nuclear dependence of PDFs is not predicted by pQCD
 - Important test for saturation models
 - Polarized proton beams
 - Energy scan is straightforward if necessary to separate different underlying mechanisms
 - Example: studied d+Au at 20, 39, 62, and 200 GeV in just 51/2 weeks

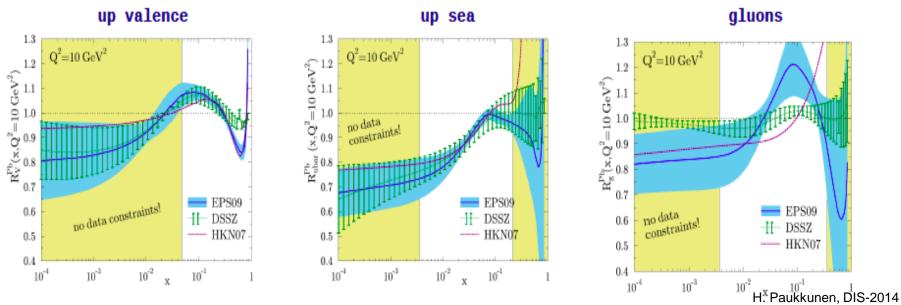
Where do gluons saturate?

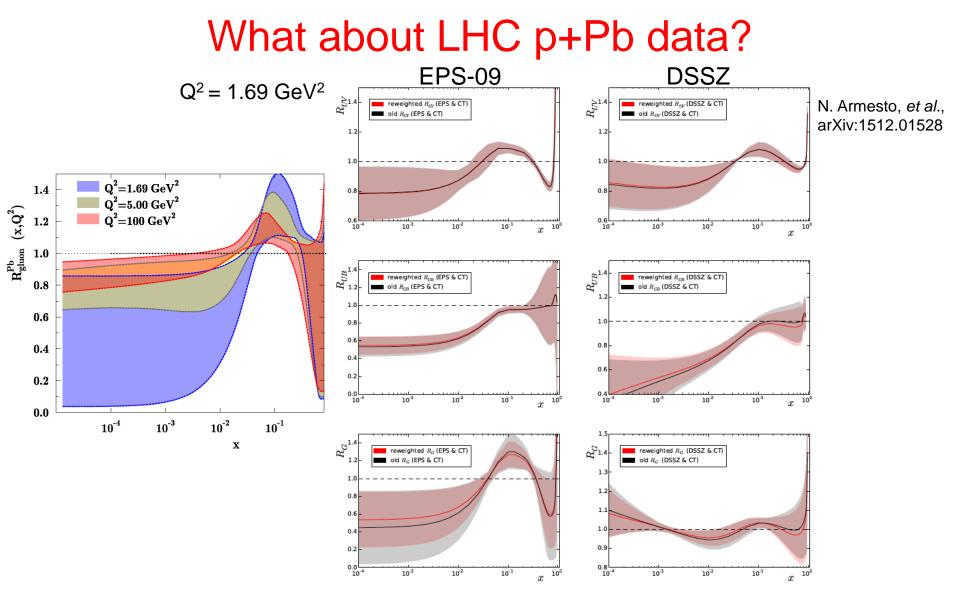

- Rapid rise of gluons is described by linear pQCD evolution equations
- Rise can't continue forever
 - Non-linear evolution must become important at some point
 - Introduces a new scale, $Q_s^2(x)$

Where do gluons saturate?

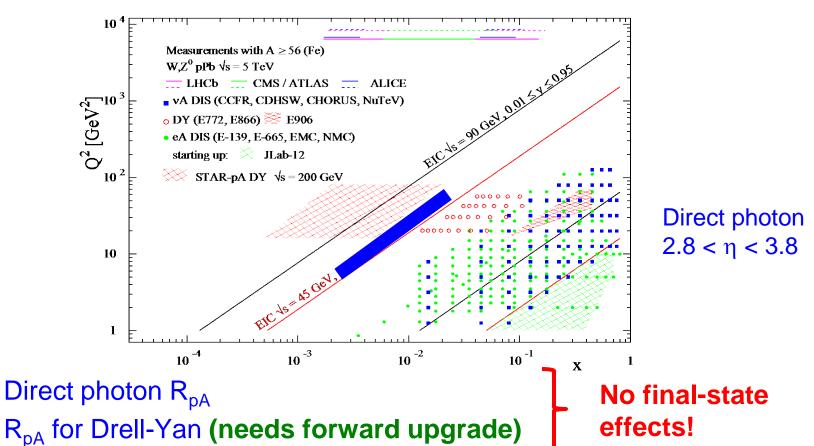


- Need measurements over a wide range of x, Q² to constrain "standard" nuclear PDFs
 - Crucial to separate initial and final state effects
- Must go to forward rapidities and moderate transverse momenta to probe the saturation regime


Current state of nuclear PDFs


- EPS-09 includes PHENIX mid-rapidity $\pi^0 R_{pA}$ with a weight of 20
 - Produces the large suppression / enhancement of the gluon distribution in the shadowing / antishadowing regimes

Current state of nuclear PDFs



- **DGLAP** predicts **Q**² dependence, but **NOT A- or x-dependence**
- Saturation models predict the A- and x-dependence, but NOT Q²
- Need a wide Q^2 lever arm at fixed x, together with an A-scan

- Nuclear effects evolve away quickly with Q²
- LHC data provide only minimal constraints to the nuclear PDFs

Key RHIC nPDF and saturation observables

- pA ultra-peripheral collisions: $g(x, Q^2, b)$
- Di-hadron correlation measurements
- $A_N^{pA}(\pi^0) / A_N^{pp}(\pi^0)$
- Direct-photon + jet correlations (needs forward upgrade)

Carl Gagliardi - RHIC Cold QCD Plan

Assumes Drell-Yan R_{pA} at 200 GeV forward upgrade QCD/DY at 2.5 < η < 4.5 Д0¹⁰ Д0/020 10⁹ conts DY signal QCD bkg. - pp 500 GeV:QCD/DY DY LO signal DY NLO signal —— pp 200 GeV:QCD/DY 10 10 10⁷ 10 10⁶ 10-2 2.5 < η, η < 4.5 10⁵ opposite charge 10^{-3} E1, E2 > 10 GeV 10⁴ 10-4 p+A (s = 200 GeV

• Challenge is to reject intense hadronic backgrounds

10⁻⁵

5

6

7

8

9

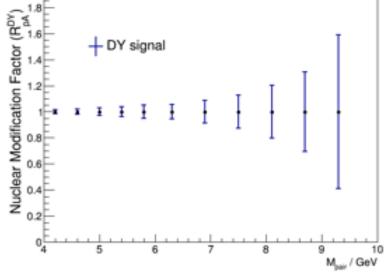
10

M_{pair} / GeV

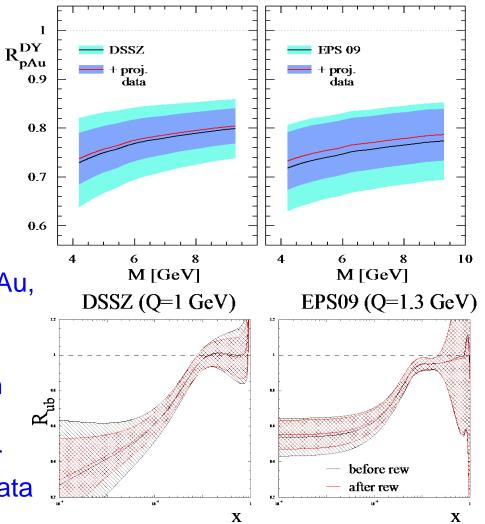
• Proposed forward upgrades will do the job

9 10 M_{inv} (GeV/c²)

7

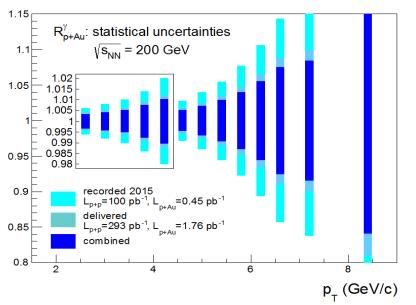

6

8

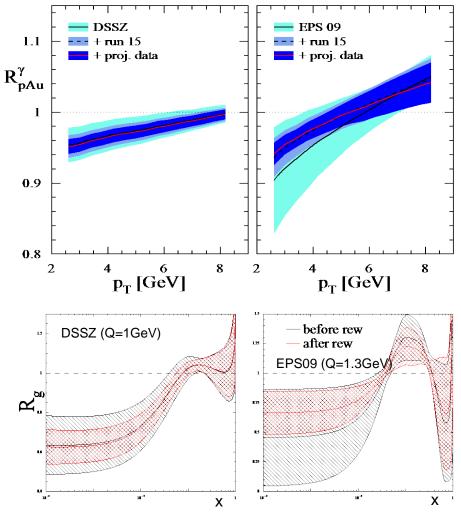

5

3

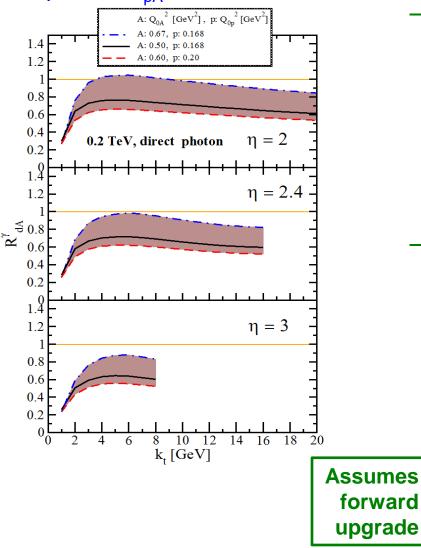
Drell-Yan R_{pA} at 200 GeV Assumes forward upgrade Projected impact on sea quark nPDFs



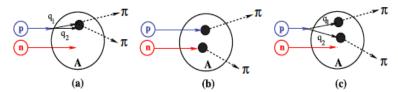
- Similar statistics in 200 GeV pp, p+Au, p+Al
- Significant improvement in our knowledge of sea quark densities in heavy nuclei
- Significant extension of the Q² lever arm at low *x* relative to future EIC data


Direct photons

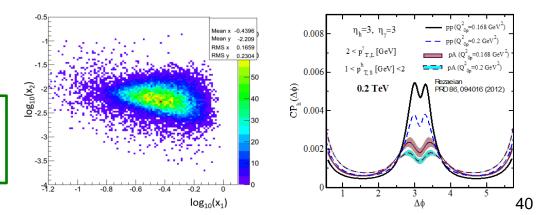
Data from p+Au run in 2015 and 2023


- Direct photon and Drell-Yan will provide:
 - Substantial improvements in our understanding of nuclear PDFs in the near term
 - Alternative observables and kinematics to EIC in the long term

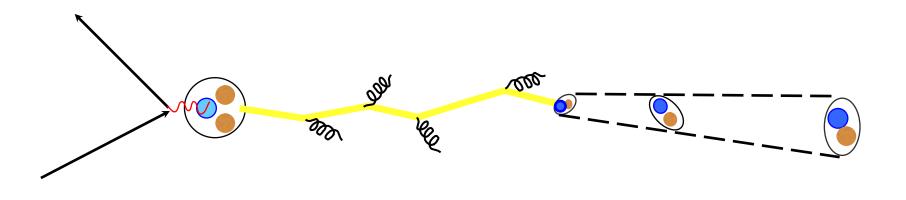
Projected impact on gluon nPDFs



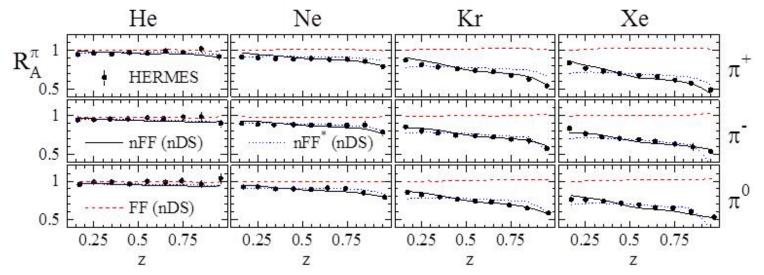
Saturation probes


CGC prediction for direct photon R_{pA}

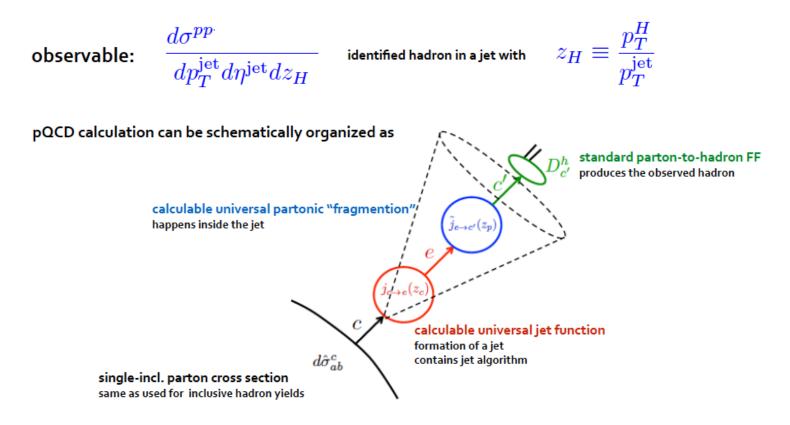
- Forward-forward correlation measurements
 - Di-hadron correlations in p+A
 - First data from 2015 p+Au
 - Reduced pedestal compared to d+Au
 - Eliminate double-interaction mechanism



- Photon-jet and jet-hadron correlations
 - 1M forward-forward gamma+jet events in 2023 p+Au and p+Al
 - Gamma+jet has no final state contribution


Carl Gagliardi – RHIC Cold QCD Plan

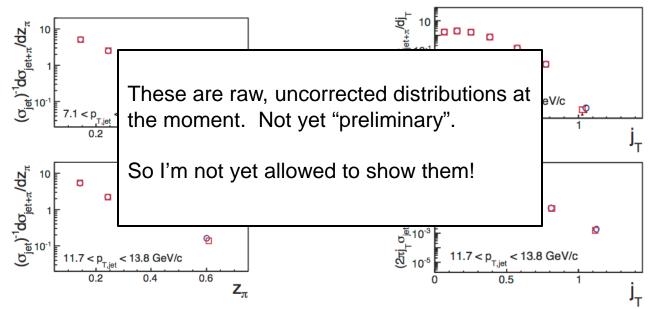
What about final state effects?


- JLab 12-GeV and EIC both anticipate major programs to explore the hadronization process
 - Probe the mechanism for confinement
- What can we learn at RHIC?

Hadronization in the nuclear environment

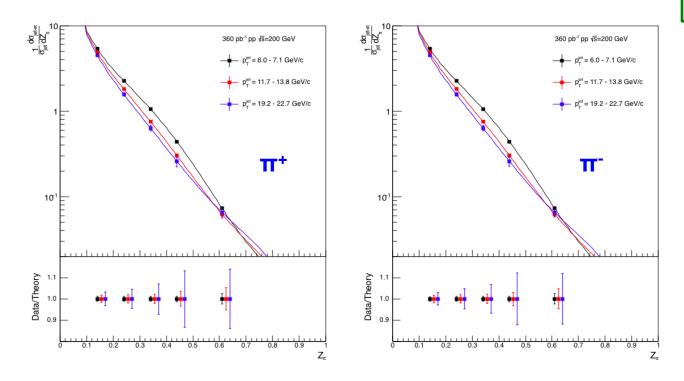
- Examining the fragmentation distribution isolates final-state hadronization contributions from initial-state nPDF modifications
- Large nuclear effects have been seen in *eA* scattering
- Can be described in terms of an effective nuclear fragmentation function
 - Don't know the underlying QCD process
 - Don't know if these effects survive to high \sqrt{s}
 - Don't know how gluons might differ from quarks
 - Difficult to access gluon FF in DIS

Measuring fragmentation functions at RHIC



considerable theoretical activity recently:

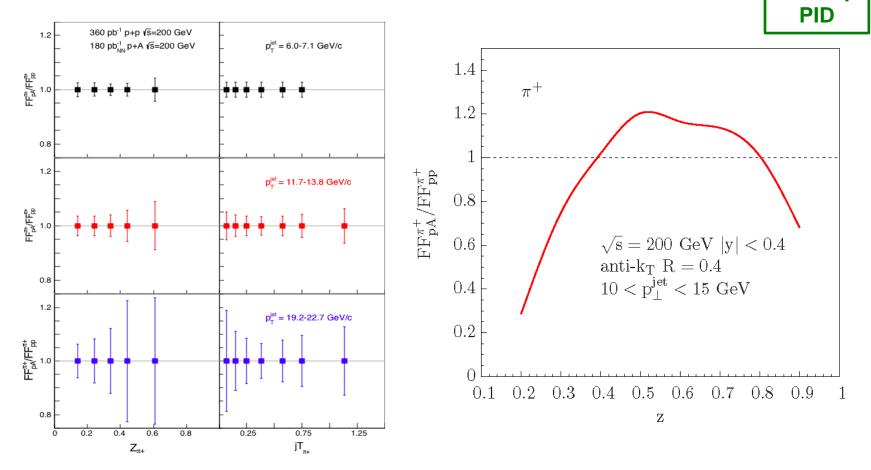
MC techniques: Procura, Stewart; Jain et al.; Arleo et al.; Ritzmann, Waalewijn, ... anal. calc. (small jet approx.): Kaufmann, Mukherjee, Vogelsang 1506.01415


• Recently the formalism has been developed to relate the distribution of hadrons inside a jet quantitatively to the fragmentation function

Fragmentation functions at RHIC

- STAR has initiated a series of fragmentation function measurements
 - First step: access to gluon FF in 500 GeV pp collisions
 - Measuring both longitudinal and transverse jet structure
 - Will follow with 200 GeV pp and p+Au collisions
 - Can also measure longitudinal-transverse correlations
 - Critical input for unpolarized TMD calculations
- RHIC p+A fragmentation measurements probe similar kinematics as EIC cold-nuclear matter energy loss, but with a **gluon-rich probe**

How well can we do in pp?

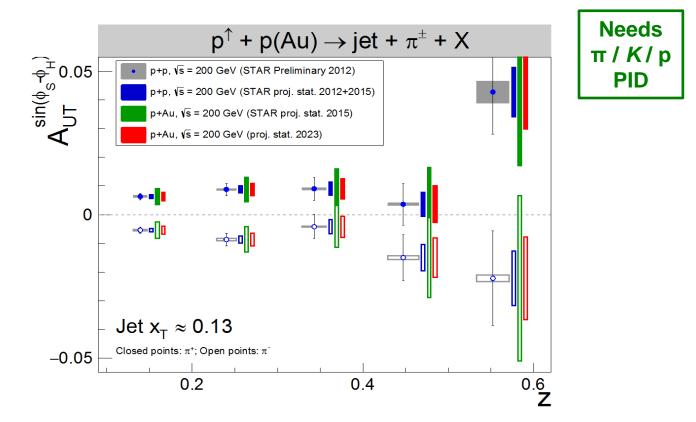


- Projected measurement of identified pions in mid-rapidity jets at 200 GeV with 2023 data included
 - Theoretical curves for DSS14 FF calculated using code from Kaufmann et al
 - Will also measure identified kaons and (anti-)protons with reduced precision over a more limited z range

Needs

π/K/p PID

How well can we do in p+A?



- π^+ FF in p+A / FF in pp for $|eta_{jet}| < 0.4$ in three representative jet p_T bins (will have comparable statistics for π^-)
- Model prediction calculated by Z.-B. Kang, using nFF from M. Stratmann

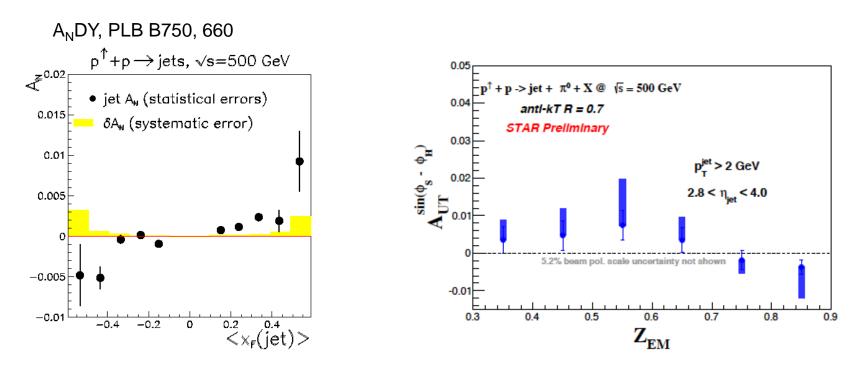
Needs

 $\pi/K/p$

Can even measure polarized nuclear FF

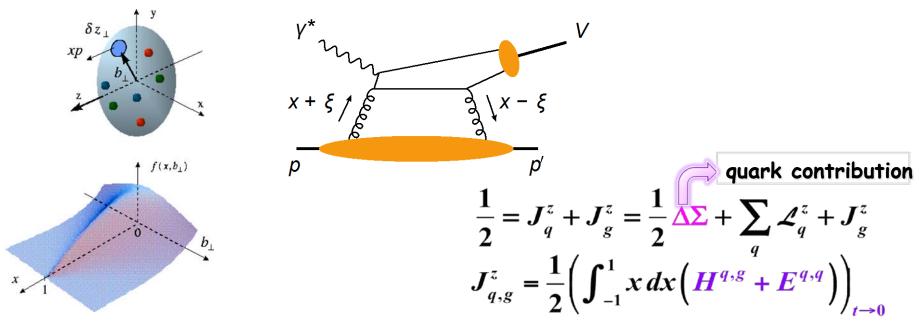
- Collins effect in p+A
 - Extreme test of factorization / universality !
 - Unique at RHIC
- STAR took a first opportunistic look for p+Au during 2015 run
- Will obtain much better statistics, plus a lighter nucleus, in 2023

Summary


In the baseline RHIC run plan

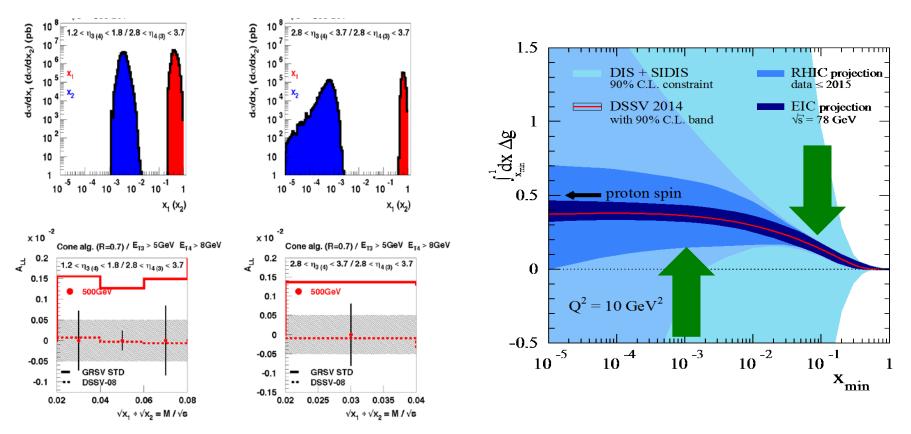
	Year	6.00.10	Delivered	Scientific Goals	Observable	Decisional
		√s (GeV)	Luminosity			Required Upgrade
Scheduled RHIC running	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A _N ^{DY} : Postshower to FMS@STAR
				Transversity, Collins FF, linear pol Gluons, Gluon Sivers in Twist-3	$\begin{array}{c} A_{UT}^{\sin(\phi_{S}-2\phi_{h})} A_{UT}^{\sin(\phi_{S}-\phi_{h})} \text{ modula-}\\ \text{tions of } h^{*} \text{ in jets, } A_{UT}^{\sin(\phi_{S})} \text{ for jets} \end{array}$	None
				First look on GPD Eg	A_{UT} for J/ Ψ in UPC	None
	2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
				properties and nature of the diffractive exchange in p+p collisions.	A_N for diffractive events	None
HIC ru	2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	R _{p41} (DY):Yes Forward instrum.
nning				Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^* in jets, nuclear FF	None
				Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
	2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAI} : direct photons and DY	<i>R_{pAi}</i> (DY): Yes Forward instrum.
				A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^* in jets, nuclear FF	None
				A-dependence for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum.
Pote	202X	p'p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$ and	Yes Forward instrum.
Potential future running				quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton- proton collisions	mid-rapidity	None
ure	202X	<i>p</i> p@ 510	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A _{LL} for jets, di-jets, h/γ-jets	Yes
			10 weeks		at <i>n</i> > 1	Forward instrum.

More high-impact science if the opportunity arises


Carl Gagliardi – RHIC Cold QCD Plan

Origin of forward hadron asymmetries ?

- A_N for forward jets is factor of ~10 smaller than for π^0
- Collins for π^0 in forward EM jets is too small to explain $\pi^0 A_N$
- Maybe the π^0 A_N arises from diffraction? (~20% of cross section)
- Combination of Roman pots with forward upgrade will open a new era of diffractive jet spin asymmetries


What about orbital angular momentum?

- Generalized parton distributions (GPDs), measured via exclusive reactions, provide access to L_q and L_g
- Exclusive J/ψ production in ultra-peripheral collisions with transversely polarized p+p and p+Au provides access to the GPD E_q
 - The GPD *E* is responsible for orbital angular momentum
 - Only access world-wide to E_q before EIC
- First measurements started in 2015 enabled by the Roman Pot phase II* upgrade to STAR

Carl Gagliardi - RHIC Cold QCD Plan

Gluon polarization in 2020+

- If run longitudinal during 200 GeV pp running, can reduce π⁰/jet uncertainties a further factor of 2
- Forward-forward di-jets in 500 GeV pp running can directly sample Δg at $x \sim 10^{-3}$ (needs forward upgrade)