STAR, the BES-II, and the iTPC Upgrade

pp 510 GeV

0

Helen Caines Yale

BNL-PAC June 2016

B

39 Gel

<u> 6</u> Gel

40

2:2 Gel

$BES-I \rightarrow BES-II$

Helen Caines - BNL-PAC - June 2016

First Order Phase Transition?

PRL 112,162301 (2014)

Beam energy baryon dv_1/dy trend complex interplay of:

- v_1 baryons transported from beam
- v_1 from pair production

Net-Proton isolates directed flow of transported:

Double sign change in dv_1/dy

14.5 GeV in published trend

Not seen in kaons

Many transport models have monotonic trend

Softening of EoS ?

Presence of Critical Point?

Critical Points:

divergence of susceptibilities

e.g. magnetism transitions divergence of correlation lengths e.g. critical opalescence

Correlation lengths diverge \rightarrow Net-p $\kappa\sigma^2$ diverge

- Top 5% central collisions:
 - Non-monotonic behavior
 - Enhanced p_T range \rightarrow enhanced signal
- Peripheral collisions:
 - smooth trend
- 5-10% central collisions:
 - in between
- UrQMD (no Critical Point):
 - shows suppression at lower energies
 - due to baryon number conservation

Helen Caines - BNL-PAC - June 2016

Presence of Critical Point?

0-5% Poisson

5-10% Poisson

--- 70-80% Poisson

Critical Points:

divergence of susceptibilities

e.g. magnetism transitions divergence of correlation lengths e.g. critical opalescence

Correlation lengths diverge \rightarrow Net-p $\kappa\sigma^2$ diverge

0-5%

5-10%

→70-80%

5

The spinning QGP

Feeddown corrected

Marginal significance for ⁴ each energy

Ensemble and trend add confidence

anti- $\Lambda > \Lambda$ Both EM and vorticity

$$P_{vortical} = \frac{1}{2}(P_{\Lambda} + P_{\bar{\Lambda}})$$
$$P_{EM} = \frac{1}{2}(P_{\Lambda} - P_{\bar{\Lambda}})$$

First observation of global hyperon polarization

Helen Caines - BNL-PAC - June 2016

S<u>ŢAR</u>

STAR upgrades for BES-II

Enhanced Acceptance Enhanced PID Enhanced Event Plane Resolution Enhanced Centrality Definition

iTPC: Approved Project

Increase in #channels in 24 inner sectors by ~factor 2

Provides near complete coverage

New electronics for inner sectors

8

Helen Caines - BNL-PAC - June 2016

Event Plane Detector: EPD

Replacing BBCs

Proposal approved by STAR

Helen Caines - BNL-PAC - June 2016

Endcap Time-Of-Flight: eTOF

Forward PID over iTPC η range

-1.6 < η < −1.1 TPC dE/dx effic. drops rapidly in this range due to p_Z boost LOI prepared between institution

Proposal approved by STAR

Compressed Baryonic Matter Experiment (CBM)

1/10th TOF modules installed inside East pole-tip

Large-scale integration test of system for CBM

Single TOF module for Run-17

- integration test

BES-II: Softening of EoS

BES-I: Double sign change of v₁

Precision measurement of dv₁/dy as function of centrality

iTPC+ eTOF:

Enhanced coverage at forward y Signal larger - role of baryon stopping

11

BES-II: Softening of EoS

BES-I: Double sign change of v₁

Precision measurement of dv_1/dy as function of centrality

BES-II: Critical Fluctuations

BES-I: Suggestive of non-trivial \sqrt{s} dependence of net proton

cumulant ratios

iTPC: Increase Δy_p acceptance $\Delta y_p > \Delta y$ correlation EPD:

Improved centrality selection Use all TPC for measurement

<u>STAR</u>

p-meson broadening:

different predictions for di-electron continuum (Rapp vs PHSD) iTPC: Significant reduction in sys. and stat. uncertainties

Enables to distinguish between models for $\sqrt{s} = 7.7-19.6$ GeV

Low Mass Region:

iTPC: Significant reduction in sys. and stat. uncertainties

Disentangle total baryon density effects

BES-II: Onset of Deconfinement

NA49 - onset of deconfinement at $\sqrt{s} = 7.7 \text{ GeV}$

Fixed target program Collider can't run below 7.7GeV Target in beam pipe at z=210cm

Will perform dedicated short runs More efficient Successful tests completed

eTOF+iTPC: Forward acceptance in fixed target mid-rapidity range Reach 7.7 GeV for fixed target too

Precision investigation with new techniques

BES-II: Detailed Run Plan

Run in 2019 & 2020 will have significant physics impact

	Collision Energies (GeV):	7.7	9.1	11.5	14.5	19.6
	Chemical Potential (MeV):	420	370	315	260	205
	Observables	1	Millions o	f Events	Needeo	ļ
	$R_{\rm CP}$ up to $p_{\rm T}$ 4.5 GeV	NA	NA	160	92	22
t P.T. QGP	Elliptic Flow of ϕ meson (v_2)	100	150	200	300	400
	Local Parity Violation (CME)	50	50	50	50	50
	Directed Flow studies (v_1)	50	75	100	100	200
Ъs.	asHBT (proton-proton)	35	40	50	65	80
C.P.	net-proton kurtosis (κσ²)	80	100	120	200	400
oes	Dileptons	100	160	230	300	400
1 Prob	Proposed Number of Events:	100	160	230	300	400
EN	BES-I stats.	4	N/A	12	20 3	86

Fixed target running enables data from $\sqrt{s} = 3-7.7$ GeV

eCooling - Enables the significant statistics enhancement

BES-II: Executive Summary

High statistics exploration of QCD phase diagram and its key features

- Significantly extended detection capabilities
- iTPC \rightarrow enhanced y- p_T acceptance Project en route to success
- $\mathsf{EPD} \to \mathsf{crucially}$ improved EP resolution Hopeful support will be found
- $eTOF \rightarrow significant improvement to PID \ Hopeful support will be found$
- eCooling \rightarrow higher beam luminosities, better statistics

In conjunction: Turn trends and features into definitive conclusions

Strong theoretical interest: BEST Collaboration & 2016 INT Workshop

STAR looks forward to using these new capabilities for top-energy studies

iTPC status

Flemming Videbæk STAR collaboration

1

iTPC

ТРС	iTPC
Sparse Pads	Cover Full area
	Better dE/dx
-1 < η < 1	-1.5 < ŋ < 1.5
p _T > 125 MeV/c	p _T > 60 MeV/c

iTPC Upgrade

- 24 Inner sector modules
 - AI Strongbacks
 - Pad planes
 - Padplane Joining

- Multi Wire Proportional Chamber (MWPC) assembly
- Readout Electronics
 - iFEE
 - iRDO
- Installation and Insertion Tooling

Recent Developments

- Technical Design Report Completed (Dec 2015)
- Risk assessment requested by ALD for TPC and iTPC submitted early December
- Directors review Jan 22 2016
 - External Reviewers, DOE attending
 - Favorable Report, with follow up response from STAR
- Meeting with DOE NP February 18, 2016
 - Approved to proceed with Project
- Management Plan iterated with DOE NP
- The addition of the short Run-18 has led to review of installation schedule and implication for Run-19
- Final prototyping for production moving ahead

Pad plane layout

Pad plane connector Layout

- Minimize trace length (noise)
- Same #even/odd pads per connector
- Allows testing of new sectors with old electronics (Shandong)

TPC strong backs

2 Prototype (old design) fabricated by UT Austin.One used to setup and practice techniques at Shandong3D CAD design – (lower fabrication and inspection cost)

- Production on-going
- First 2 articles completed;
- Inspection report delivered;
- Once accepted full production completed in 6-8 wks

BES-II and iTPC PAC 2016

- Joining of padplane (LBNL)
 - Contract being setup
- Work in China Shandong, USTC, SINAP
 - Prototype of iTPC (ongoing)
 - Wire plane production 24+spares and assembly– Start December 2016
 - Sector test (uniformity, efficiency and linearity)
 - Shipping sector to BNL (last shipment July 2018)
- Work at BNL
 - Testing of all module at BNL before installation

iTPC Electronics

STAR

- STAR iFEE
 - In the PCB layout phase (finished ~June 20)
 - Plan to make ~10 PCBs at first
 - PCB delivery expected mid July -- matches the SAMPA BGA schedule
- STAR iRDO
 - Design changed to make it simpler and better integrated with other STAR Electronics Projects
 - Based upon a commercial daughtercard which houses the FPGA, PROM, SDRAM, clocks etc
- Data Receiver
 - Based upon a similar commercial daughtercard as the iRDO which saves us a lot of effort and makes it simple to do
 - 4 fibers, PCIe x4 readout interface
 - For FY17 tests we plan to use a commercial Xilinx development board (1 optical fiber, PCIe interface)
- A prototype for a 2 iFEE readout expected Sept and will be installed on one existing sector for the pp500 run in 2017
- Mitigating risks by early prototyping and testing in collision environment

Insertion Tooling

Cartesian Installation Tool Design

Insertion tooling needed for installation and for replacement of two outer bad sectors

Designed by Rahul Sharma, Ralph Brown and much input from LBNL, CERN

BES-II and iTPC PAC 2016

Installation

Conceptual clean environment Essential to keep dust from getting into TPC

Reality - messy

BES-II and iTPC PAC 2016

STAR

Installation schedule

STAR

- End Run-17 (6/1/2017)
 - 8 month installation period
 - Roll-in/out of STAR 3 mo.
 - Verify & test installation tooling
 - Exchange one outer sector, and possibly one new inner sector module with electronics (risk mitigation)
- Run 18 Start 2/1/2018 End 4/30/2018 (13 weeks)
 - Long installation (shutdown) period needed
 - Not much float and time full commissioning
 - Aim for start of Run-19 in March 2019
 - Need to be kept in mind and discussed with RHIC as project moves forward

- iTPC important upgrade for BES-II
- US-China collaboration for production
- Production of inner sectors has started
- Installation Schedule between Run-18 and Run-19 is very tight
- Yearly Review with DOE NP being scheduled for September.

BES-II and iTPC PAC 2016

Report main points

- Are the costs of the project sufficiently well understood, and are all the resources required to complete the project fully identified?
 - Answer: Yes.
- Is the schedule of the project sufficiently well understood and matched to the plan for full operation in the FY19 RHIC Run?
 - Answer: Yes.
- Are the risks introduced by the project into the successful operation of the STAR detector in the Beam Energy Scan Phase 2 run fully understood and are sufficient plans to mitigate these risks in place?
 - Answer: Yes
- Full report available as aux material

iTPC Electronics Status

SAMPA chip prototype 2 ("MWP2")

- Wafers arrived in Orsay (France)
- They were unpacked, checked and sent for further processing
 - Thinning (started June 8, expected ~1 week)
 - Dicing (another week)
 - Bonding to a CERN developed "NCCA" test board expected
 - to start June 22 \Rightarrow available early/mid July
- Similar process for the BGA started
 - 340 packaged BGAs expected mid July

Test Boards

BROOKHAVEN

- CERN group (Orsay) developed 2 passive test boards
 - For the raw die (bonded chip), so-called "NCCA"
 - For the packaged BGA ("PCCA")
- STAR gets 1 of each for early SAMPA tests and firmware development
- The FPGA "intelligence" interface board is a commercial Altera-based board which we purchased already

iTPC Electronics Near-term Schedule

SAMPA basic tests with CERN-developed NCCA & PCCA boards	Jul-Aug 2016
iFEE SAMPA tests & firmware development continue	Aug 2016
$iFEE \Leftrightarrow iRDO \Leftrightarrow Receiver Card basic readout integration$	Sep-Dec 2016
Final iRDO design (based upon what we learn from prototype)	~ Nov 2016 - Mar 2017
Install 2 iFEEs (128 ch total) + 1 iRDO prototype + 1 Receiver Card prototype into TPC	Dec/Jan
Install 2 iFEEs (128 ch total) + 1 iRDO prototype + 1 Receiver Card prototype into TPC SAMPA evaluation with real collisions in RHIC	Dec/Jan Jan 2017
Install 2 iFEEs (128 ch total) + 1 iRDO prototype + 1 Receiver Card prototype into TPC SAMPA evaluation with real collisions in RHIC Readout chain firmware & software development continues	Dec/Jan Jan 2017 Jan 2017

- *if* MWP2 works for STAR , we assume we can get enough of them for 1 sector for FY18
- This plan to (re)discuss in early Fall with the SAMPA team.
- The general SAMPA schedule also assumes MWP3 to be available roughly 1 year (or less) from now so there might actually make a sector's worth of our electronics with that (potentially improved, close-to-final) version.
- At this early point two options for Run-18: MWP2 or MWP3. The point is that we have options

EPD timeline

- Install 1/8 EPD installation for Run 17
- Finalize design after Run-17
- Produce and install the remaining 7/8 for Run-18 (19)
- Total cost: 240-330 k\$

eTOF

- Schedule
 - June 2016: submit the plan and schedule for the prototype installation to STAR operations
 - Install and operate 1 prototype module for Run-17

BES-II and iTPC PAC 2016

- June 2017: submit the plan and schedule for the endcap TOF installation to STAR operations.
- October 2018: Complete the installation of the endcap TOF system. Begin commissioning.
- July 2020: Decommission the endcap TOF system and prepare the CBM TOF equipment for return to CBM.
- Cost to STAR

06/17/2016

BROOKHAVEN

114k\$ + manpower for installation.

BACK UP

Evidence for a Critical Point?

R. Lacey, PRL 114, 142301

Helen Caines - BNL-PAC - June 2016 19

The Spinning QGP

 $|L| \sim 10^5$ in peripheral collisions

Do we generate a "spinning" QGP?

Does this angular mom get distributed thermally?

How does that affect fluid/transport? Vorticity - local spinning motion

$$\vec{\omega} = \vec{\nabla} \times \vec{v}$$

Viscosity dissipates vorticity to fluid at larger scales

Can we see any manifestation of this spinning in the data?

Measuring A **Global** Polarization

Direction of L:

Estimate from 1st order reaction plane from BBC

Λ Polarization
Self analyzing
Decay p preferentially emitted in Λ spin direction
Decay anti-proton preferentially emitted

against Anti-A spin direction

 Λ and anti- Λ spins aligned with L \rightarrow Vortical or QCD spin-orbit

Sigma feed-down tends to dampen the effect

Λ anti-aligned, anti-Λ aligned with L \rightarrow μ_H - B coupling

• Sigma feed-down goes with the primaries

Vorticity \rightarrow *Global Polarization*

Alignment of spin with |L|

Global polarization of emitted particles

- Betz, Gyulassy, Torrieri PRC76 044901 (2007)
- Becattini et al., PRC88 034905 (2013)
- Becattini et al., JPhys 509 012055-5 (2014) (SQM2013)
- Csernai et al., JPhys 012054-5 (2014) (SQM2013)
- Grossi JPhys 527 012015-5 (2014) (XIV Conf. Th. Physics)
- Becattini et al. arxiv:1501.04468

QCD spin-orbit coupling (non-hydro picture)

Similar conclusions

- Voloshin arxiv:nucl-th/0410089
- Liang and Wang, PRL94 102301 (2005); PRL96 039901(E) (2006)
- Liang and Wang, PLB629 20 (2005)

Baryon stopping generates localized vortices

Rotational & Irrotational Vortices

Simplest vorticity: $\vec{\omega} = \vec{\nabla} \times \vec{v}$

Rigid-body-like vortex $\mathcal{V} \propto \mathcal{I}$

Irrotational vortex $v \propto 1/r$

Like the moon, always the same side toward Earth

Notice the rotation, or lack thereof, in the fluid elements