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| Asking ChatGPT: Il

This is not completely true :) see next slide.
Of course it remains hard to anticipate exactly how Al/ML

along with the computing landscape will evolve in the
next 10 years




° h h 1 ChatGPT can only fetch data prior to the year|
A I 1 n t e E I C S C e u e 2021 as its training stopped in the year 2021

We had two workshops, last one
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I_Outline _l

e Modern features of ePIC SW favorable for AI/ML

“The ePIC detector could be (one of) the
e Ongoing activities first large-scale detector to be designed
: with the assistance of Al”
o Detector design

o (Simulation)/Reconstruction/PID/Analysis “Streaming Readout could allow rapid
o AI4EIC + hackathon example turnaround of physics data and
integration of Al/ML tools”

e Next steps
o  Tutorial/documentation “In ~2030, the ePIC detector could be

. one of the first largely automated
o AlML in SRO and for Control experiments where Al will be largely

o Desiderata (a non-exhaustive list) applied for control.”

e Conclusions

[2] C. Fanelli NP LRP, Hot and Cold QCD Town Hall, ML and Al Applications for QCD Experiments 4 I



https://indico.mit.edu/event/538/contributions/1194/attachments/527/903/NSAC-LRP_MIT_2022_3.pdf

rKi—favorable features of ePIC SW sta6E1

Design:

o Geometry implementation via data source makes transparent the coupling of Al to
the software stack design parameters

o Modularity of geometry description
o Automated features (checking overlaps)
More in general:
o Code repository, continuous integration, containerization

o Open, simple, self-descriptive data formats (flat data model in general allows
flexibility for Al/ML applications)

o Support for truth information

Use of HEP-supported packages (e.g., ACTS, includes ONNX plugin)

More details in [3] C. Fanelli, ePIC SW Infrastructure Review, “Al/ML Synergy”

JANAZ includes an integrated Python interface
5 I


https://indico.bnl.gov/event/16676/contributions/66948/attachments/42874/71986/Slides%20-AI_ML%20synergy.pdf

Tracking Electrons and Photons /Kip PID HCAL

Nomenclature Muons
Allowed Min Resolutio p-Range Resolution
Min pr Resolution X/Xo Si-Vertex E n oelE PID (GeVic) Separation MinE oelE

Hermetic and E o
multi-purpose detector o1 A Detectons

Instrumentation to
separate charged
particles from 7 ~50%/NE+6%

e Inclusive,
semi-inclusive,
. T BDa:‘twctaor;s ~45%NE+6%
eXCIUSIVe = Oxy~30pm/pr+

Op/p ~ 0.05%x%p+1.0% 20pm 7%INE+ <7 GeVic

measurements : (9% | suppression

up to 1:104

Op/p ~ 0.1%xp+2.0% Oxy~30pmipT+
40pm

Jets, heavy quark
Diffractive and Detectr Wolel - ) <10 Gevic o

Central 100 MeV TT Oxyz~ 20 pm,

Barrel Op/p ~ 0.05%x*p+0.5% ~85%/NE+7% Useful for

135 MeV K pm + 5 pm <15 GeVic improve

. resolution
tagging (10-12)% $30 Gevic

VE+(1-3)%
op/p ~ 0.05%xp+1.0% Oxy~30pm/pr+

Requirements are needed Forward 20pm < 50 Gevic

Detectors ~35%NE

to fulfill the EIC physics 0o 0 i ==
" <45 GeVic
program E— o

separate charged
particles from ¢
Auxiliary
Detectors
Gintrinsic( |f)/It] < 1%;
Acceptance:
0.2< pr<1.2 GeV/c

[4] R. Abdul Khalek, et al. “EIC yellow report." Nuclear Physics A 1026 (2022): 122447




rxi—assisted Design

e Majority of the technology choices have been made, and we expect to work mainly with
continuous parameters.

e Examples: plenty of degrees of freedom to optimize in the central (e.g., tracking, dRICH)
and in the far-forward/backward systems

‘Selectthe M

Cf. [6]
gatherscﬁ)'sksrvations Multi-Objective Optimization
Adaptive Experimentation  and suggests new points Detector response Physics gains Costs
customization - ' E..
Aaby
h ?J1“1 e Learning the optimal
l compromises between
Physics Detector :malg'iiglf competing objectives
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compute intensive (Geant4)

e  Accelerate design process,

Al-assisted tools (with human guidance), allow to achieve design understand tradeoffs, while
goals (physics and detector performance, costs) optimizing costs
W [5] CF et al., Nucl.Instrum.Meth.A 1047 (2023) 167748 vi
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[6] K. Suresh,interactive navigation of Pareto front,



https://ai4eicdetopt.pythonanywhere.com/

I Sim/Reco/Ana: ongoing activities/examples

ML PID with measured shower profiles from calorimetry Leptons (u,e) ID with Deep Learning at EIC

Shower
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ML with shower
imaging significantly
improves PID and
boosts pion rejection Class Output Float

For imaging calorimeter concept C. Peng [7] ECCE detector
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Studied for STAR (potential application @sPHENIX, EIC)

° Focused on identifying jets originating from heavy quarks DNN-based compare to electron,
5, suchasband c, as opposed to lighter quarks and gluons. o =0 o0 2] Jacquet-Blondel and the double-angle methods
mf Trained on jets produced with PYTHIA - =ay M. Diefenthaler, et al. EPJC 82.11 [2]

DIS events at ZEUS; possible application for EIC

ssfiecion jab [7] Examples taken from AI4EIC workshop https://indico.bnl.gov/e/AI4EIC ~ --ONd many more activities 8



https://indico.bnl.gov/e/AI4EIC

PID = 211.0, p = 15.00 GeV/c, theta = 20.00 deg. phi = 0.00 deg

r?htorials/
Documentation

e Example from AI4EIC hackathon

o  PID with dRICH of ePIC using full simulations S—
based on the ePIC SW stack Mimestiun

Theta 6
. . Phi ¢
e Tutorial/documentation for the hackathon: - n
| Training Events | ¢
Momentum

o Documentation (problem description and dataset): Theta @
Phi ¢
o Provided example training scripts in both PyTorch and TensorFlow for a "plug Problem | Thiahol
and play" experience (focus on model development and insert it into our pipeline Number | Accuracy

[ Problem 1
[ Problem 2
, Problem 3

and have the training/evaluation code)

o Provided detailed description on how to utilize the framework, AWS
environments, deal with resource contention, and perform distributed training for
more advanced users *Problem 3: addition of noisy hits

Best solutions:
) JINR team: CatBoost
) Jets team: 2D CNN

The best solutions were all Machine Learning/Deep Learning-based, they were quite
original, and they outperformed solutions based on classical cut-based approaches
_ (followed by some teams). While this is only a first step towards deeply learning the
%ﬁ identification of particles reconstructed with the d-RICH, these exploratory studies clearly

. . . https://ai4eichackathon.pythonanywhere.com/leaderboard
indicates the potential of ML/DL approaches for reconstruction and PID. P pyfhonany

Jefferson Lab



https://doi.org/10.5281/zenodo.7197023

rﬁbving forward

e Add machine learning libraries to the EIC environment

e Tutorials/Documentations

e Study flexible and efficient algorithms for SRO (work with stream of data robust against
potential change in experimental conditions)

e Large-scale Al/ML architectures
o Considerations on scalability and specific infrastructure need
o ML lifecycle;

o Distributed training:

m may become necessary in Al pipelines working with big data: training time
exponentially increases, scalability cumbersome, other limitation factors
(e.g., algorithm computational complexity outpaces the main memory)

e ...and more




I S U m m a I" M https://eic.ai/ai-ml-references I

e The EIC community is active on AI/ML (not included are also funded Al activities for EIC):

o  The number of AlI/ML activities in ePIC is anticipated to grow in the next few months (e.g., reconstruction, PID)
with more data from our simulation campaigns

o Inthe long-term, Al/ML will likely permeate and contribute to multiple aspects of near real-time analyses
e Need support for interdisciplinary research and develop multi-disciplinary workforce:
o It would be advantageous to have a more coherent workforce on Al/ML (e.g., Al sub-WG)

o  Educational/training activities simply necessary. This is a discussion that already started in the Computing and
Software WG and the idea is to actively begin this year.

e Transitioning from prototyping to deployment in production environments

e Not enough emphasis on algorithmic development

o e.g., we do not know what is the best ML/DL that we can do with Cherenkov detectors, though there are clear
hints it is worth continuing these studies (event-level reco)

e Robustness, explainability, also very important cross-cutting themes for applications in our field.

m [8] Computational Nuclear Physics and Al/ML Workshop, 6-7 Sep 2022
S [9] P. Bedaque, et al. "Al for nuclear physics." The European Physical Journal A 57.3 (2021): 1-27. 1 1
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Hot & Cold QC Communit

Recommendation 2: EIC Project Recommendation 2: EIC Project

We the iti ion of the EIC as the highest priority for facility construction.

The Electron-lon Collider (EIC) is a powerful and versatile new accelerator facility, capable of colliding high-energy

beams ranging from heavy ions to polarized light ions and protons with high-energy polarized electron beams. In the 1 0
2015 Long Range Plan the EIC was put forward as the highest priority for new facility construction and the expeditious
completion remains a top priority for the nuclear physics community. The EIC, accompanied by the general-purpose
large-acceptance detector, ePIC, will be a discovery machine that addresses fundamental questions such as the origin
of mass and spin of the proton as well as pvoblng dense gluon systems in nuclel It will allow for the exploration of new
landscapes in QCD, permitting the r high- mapping of the quark and gluon
components inside of nucleons and nuclei. Reallzlng the EIC will keep the U.S. on the frontiers of nuclear physics and
accelerator science and technology.

e Building on the recent EIC project CD-1 approval, the community-led Yellow-Report, and detector proposals, the
QCD research community is committed to continue the development and timely realization of the EIC and its first
detector, ePIC. We recommend supporting the growth of a diverse and active research workforce for the ePIC
collaboration, in support of the expeditious realization of the first EIC detector.

We recommend new investments to establish a national EIC theory alliance to enhance and broaden the theory
community needed for advancing EIC science and the experimental program. This theory alliance will contribute
to a diverse workforce through a competitive national EIC theory fellow program and tenure-track bridge ‘ s tns recommendation
positions, including appointments at minority serving institutions.

iis recommendation

EIC Science: ep Reactions Hatta Yoshilaka

Stata Center, 32-123, MIT 1100 - 11:15 . . Recommendation 4: computing
EIC Science: eA Reactions Anna stasto Recommendation 4: Computing

Stata Center, 32-123, MIT 11:15 - 11:30

EIC Theory Workshop Summary lain Stewart High-performance and high: i nuclear physics at the 20
Stata Center, 32-123, MIT 11:30 - 1133 experimental and theory frontiers. il i i nuclear physics will

ies and ize on pi

Discussion

We d i i for software and algorithm development, including in AI/ML,
by strengthening and expandmg programs and partnerships, such as the DOE SciDAC and NSF
Lattice theory for Hot and Cold QCD Martha Constantinou CSSl and Al institutes.

Stata Center, 32-123, MIT 11:45 -12:05 We recommend increased support for dedicated high-performance and high-throughput mid-scale

computational hardware and high-capacity data systems, as well as expanding access to leadership
lachine Learning and Artificial Intelligence Applications for QCD (exp) Cristiano Fanelli computing facilities.

Stata Center, 32-123, MIT 11:33 - 11:45

tata Center, 32-123, MIT 12:05 - 12:20 Advanced computing is an interdisciplinary field. We recommend establishing programs to support
the development and retention of a diverse multi-disciplinary workforce in high-performance

lachine Learning and Artificial Intelligence Applications for QCD (theory) Phiala Shanahan computing and AUML.

tala Center, 32-123, MIT 12:20 - 12:35

Discussion

Stata Center, 32-123, MIT 12:35-12:50

2 plenary talks on Al/ML (theory and experiment) 424 participants

Jefferson Lab



https://indico.mit.edu/event/538/registrations/participants

I d R I C H r e C O n S t r u C t i O n * analogy with different approaches discussed for DIRC I

e Indirect Ray Tracing (IRT)

o  The basic idea is that, given tracking information and RICH PMT hits, the Cherenkov-photon emission angle can be
reconstructed.

o  The distribution of observed photon angles is compared to the expected angle for each particle type and the most
likely particle type is determined.

o  Fast, non computationally intensive. Lowest accuracy compared to other methods in this slide.
e Direct Ray Tracing (DRT)
o  Simulates a PMT hit pattern based on the track kinematics and particle hypothesis

o  Construct likelihood by comparing “PDF” to the observed hit pattern

e aerogel ring e aerogel ring

e Event-level algorithm (EVT)

e C4F10 ring e C4F10ring

o  Motivation: two close tracks can produce misidentification

o  Builds upon DRT. Improvement by looking at each event as a whole
rather than individual tracks

m — sum over all tracks in the event

R. M. Lamb, PhD thesis, 2010, The Boer-Mulders and Cahn effects: Azimuthal modulations in the spin-independent SIDIS cross section
at HERMES, 16



https://inspirehep.net/literature/872161

I_AI / M L 1 N S RO SRO for next generation electron scattering [2]

ML deployed on stream of real data CLAS + EPSCI @JLab

Hierarchical clustering in JANA2

The development of streaming readout (SRO) for # OLASIZSROsstp
the NP driven by research initiatives: *  HEASSitacsend

e  JANA2 reconstruction framework

e  Streaming Grand Challenge [1] and the facility for
“Innovation in Nuclear Data Readout and Analysis” e
(INDRA) at JLab o

) BNL LDRD "High Throughput Advanced Data
Acquisition for eRHIC, Particle Physics and
Cosmology Experiments"

e  PHENIX, STAR and sPHENIX (BNL),
KM3NeT(INFN), BDX (JLAB) and CBM (FAIR)

The CLAS12 Forward Tagger, JLab

Feb 2020 data

o
N
K 8
2
=

100 200
M(highest ene. clul, clu2) [MeV/c]

Hierarchical clustering VS traditional clustering of energy deposited by photons; Al
S RO G ran d C h a | |e n g e [ 1 ] - robust against variations in experimental conditions* (uncalibrated data in SRO)
real-time

data calibration,

e streaming handling alignment,
system readout and storage analysis, theory

organization comparec Many active projects regarding SRO at JLab:
L INDRA/ASTRA [3], AIEC (Al for Experimental Control) [4], Hydra

Aim to remove separation of data readout and analysis (Online monitoring) [5], SRO with ML on FPGA [6]
take advantage of modern electronics, computing, and analysis

Courtesy of M. Battaglieri (JLab)

[11A. Boehnlein, R. Ent, and R. Yoshida, Grand Challenge in Readout and Analysis for Femtoscale Science, 2018
[2] F. Ameli, et al., Streaming readout for next generation electron scattering experiments, Eur. Phys. J. Plus, 2022
e [3] M. Diefenthaler et al., Diefenthaler, Markus, et al. Evaluation & Development of Algorithms & Techniques for Streaming Detector Readout. No. 2020-LDRD-LD2014. 2020.
W [4] T. Jeske, et al. "Al for Experimental Controls at Jefferson Lab." JINST 17.03 (2022): C03043. — AI4EIC proceedings
[5] T. Britton, B. Nachman. "Accelerator and detector control for the EIC with machine learning." JINST 17.02 (2022): C02022. — AI4EIC proceedings 1 7
[6] S. Furletov et al., Machine learning on FPGA for event selection — AI4EIC proceedings

Jefferson Lab



| AT/ML in SRO

INTT Silicon Strips:
78um x 16mm (A)/20mm (B)

NP Physics Streaming DAQ Real-time Al

* Diverse topology * New physic capability accessible only via * Specialized Al algorithm for reliable and
* Stringent sys. Ctrl streaming DAQ high-performance data reduction
* Max data preservation * Adopted for sSPHENIX and EIC * Novel hardware emerging for high-
* Require data reduction computationally throughput Al computing
* See also JH QNP22 [link]

MVTX Silicon pixels:
27um x 29um

R~ 4cm Physics need - Streaming DAQ -> Opportunity for real-time Al - Enhanced physics program
sPHENIX Tracking:
- MVTX + INTT(fast)

- TPC(slow)

FastML.: Fast Data Processing and Autonomous Detector Control for sPHENIX and Future EIC Detectors Intel“Q?BtoEé(T%;nfmtdzzr%gg_gggglme Al

Collaboration of NP, HEP and CS:
LANL, MIT, FNAL, NJIT, ORNL, UNT, CCNU

Identify D/B hadrons with real-time ML
° Topology of D/B decays INTT
° Monitor collision vertex
° Feedback for improvement

his 4 ml
/

Very high p+p collision rate: ~3MHz

P
——
model
N / HLS
g T\ project )N
Machine learning model 7

optimization, compression

Low rate of rare signals: ~150Hz (beauty for eg)
Limited DAQ trigger bandwidth: ~15 kHz

|
i
|

(or 0.5% of p+p collisions) dyr-lo0um  DCAXY Graph Gnwolutions

_#_ No effective conventional triggers available

stable beam

[1] Huang, Yi, et al. "Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder." 2021 20th IEEE (ICMLA). IEEE, 2021. 1 8
[2] F. Fahim, et al., “HLS4ML” arXiv:2103.05579 (2021)

Jefferson Lab



https://indico.jlab.org/event/344/contributions/10499/attachments/8253/11854/AI%20in%20StreamingDAQ.pdf

Unfolding and

"data-driven” 1earning-_1

Courtesy of B. Nachman

Unfolding

Detector-level Particle-level

e e

e
Rapgap,
Djangoh,

a
]
o
p=
E
=1
g
w

Geant3

@OmniFold [1]

Using ML for differential cross section measurements
(OmniFold and otherwise). These tools for recent
measurements with DIS from HERA data and the

same tools could be used at the EIC.

A. Andreassen, P. T. Komiske, E. M. Metodiev, B.
e Nachman, and J. Thaler “OmniFold: A Method to
W Simultaneously Unfold All Observables” Phys.
Rev. Lett. 124, 182001 2020

Jefferson Lab

Courtesy of M. Arratia (UCR), B. Nachman
Lepton-jet correlation in DIS at H1 [1]

Jeny|

° First example of ML-assisted unfolding

(MultiFold method): enables simultaneous
and unbinned unfolding in high
dimensions.

° This development will allow us to do

unbinned cross-section measurements

e  Similarly, this could be applied at EIC

[1] V. Andreev et al. (H1 Collaboration), “Measurement of

Lepton-Jet Correlation in Deep-Inelastic Scattering with

the H1 Detector Using Machine Learning for Unfolding”
Phys. Rev. Lett. 128, 132002

In the “opposite” direction, it could be exciting
thinking about data-driven learning that relies
less on simulations, with tools like, e.g.,
one-class classification / anomaly-detection
[1] and weak supervision / topic modeling [2].

Flux+Mutability [1]  cAE + cMAF + HDBSCAN

Same architecture applied to n/ly showers reconstruction in GlueX
and BSM dijet signatures at LHC

[1] C. Fanelli, J. Giroux, and Z. Papandreou.

“Flux+ Mutability": A Conditional Generative Approach to
One-Class Classification and Anomaly Detection."
arXiv:2204.08609 (2022).

[2] M. LeBlanc, B. Nachman, and C. Sauer. "Going off topics to
demix quark and gluon jets in ag extractions." 1 9
arXiv:2206.10642 (2022).


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.132002
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.182001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.182001

rtéitmotif in AT /ML

Courtesy of B. Nachman (LBNL)
Uncertainty Quantification
statistical (aleatoric) / systematic (epistemic)

decrease with more events model bias

Ptrain(Z) # Perue()

Pprediction (€) 7# Prrue(€)

limited prediction statistics ) —_
inaccurate prediction data

“If the network architecture is not flexible enough it may be that the likelihood ratio is not
well-approximated. This means that the procedure will be suboptimal and will not achieve the
best possible precision. However, if the classifier is well-modeled by the simulation, then
p-values computed from the classifier may be accurate, which means that the results are
unbiased. Conversely, a well-trained network may result in a biased result if the simulation
used to estimate the p-value is not accurate.”

inference/uncertainty-aware approaches

[1] B. Nachman, “UQ for ML Applied to Data Analysis”, talk at

7 AI4EIC Meeting on Uncertainty Quantification

WS [2] B. Nachman, How to achieve optimality and account for
uncertainty, arXiv:1909.03081

Jefferson Lab

Courtesy of M. Williams (MIT/IAIFI)

nonotonic Lipschitz NN
AUC=0.93

Robustness

>.Pr AA[GGV]‘

4 6 8
log (min[x{p])

° The Lipschitz constant of the map between the input and output
space represented by a neural network is a natural metric for
assessing the robustness of the model.

° This new method constrains the Lipschitz constant of dense DL
models (can also be generalized to other architectures). The
method relies on a simple weight normalization scheme during
training that ensures the Lipschitz constant of every layer is below
an upper limit specified by the analyst.

e  The algorithm was used to train a powerful, robust, and
interpretable discriminator for heavy-flavor decays in the LHCb
realtime data-processing system.

° LHCDb has adopted this for the major selection algorithms, and

looking at it for PID, fake-track killers.

[1] O. Kitouni, N. Nolte, M. Williams “Robust and Provably
Monotonic Networks”, arXiv:2112.00038 20
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