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Asking ChatGPT:
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This is not completely true :) see next slide. 
Of course it remains hard to anticipate exactly how AI/ML 
along with the computing landscape will evolve in the 
next 10 years



AI in the EIC Schedule
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DESIGN
SIM, RECO & ANA

CONTROL

SRO

● Design, simulations, 
reconstruction and 
analysis with AI/ML are 
activities that are already 
ongoing

● AI-based Control (that 
presumably will start 
slightly before with 
accelerator) and SRO are 
next steps 

[1] https://eic.ai/workshops

ChatGPT can only fetch data prior to the year 
2021 as its training stopped in the year 2021

We had two workshops, last one 
was in October 2022… 



Outline
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● Modern features of ePIC SW favorable for AI/ML

● Ongoing activities

○ Detector design

○ (Simulation)/Reconstruction/PID/Analysis 

○ AI4EIC + hackathon example 

● Next steps

○ Tutorial/documentation 

○ AI/ML in SRO and for Control 

○ Desiderata (a non-exhaustive list)

● Conclusions

“In ~2030, the ePIC detector could be 
one of the first largely automated 

experiments where AI will be largely 
applied for control.”

“The ePIC detector could be (one of) the 
first large-scale detector to be designed 

with the assistance of AI”

[2] C. Fanelli NP LRP, Hot and Cold QCD Town Hall, ML and AI Applications for QCD Experiments

“Streaming Readout could allow rapid 
turnaround of physics data and 

integration of AI/ML tools”

https://indico.mit.edu/event/538/contributions/1194/attachments/527/903/NSAC-LRP_MIT_2022_3.pdf


AI-favorable features of ePIC SW stack 
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● Design:

○ Geometry implementation via data source makes transparent the coupling of AI to 
the software stack design parameters 

○ Modularity of geometry description 

○ Automated features (checking overlaps)

● More in general:

○ Code repository, continuous integration, containerization 

○ Open, simple, self-descriptive data formats (flat data model in general allows 
flexibility for AI/ML applications)  

○ Support for truth information 

● Use of HEP-supported packages (e.g., ACTS, includes ONNX plugin)

● JANA2 includes an integrated Python interface  
More details in [3] C. Fanelli, ePIC SW Infrastructure Review, “AI/ML Synergy”

https://indico.bnl.gov/event/16676/contributions/66948/attachments/42874/71986/Slides%20-AI_ML%20synergy.pdf


From YR: Physics WG Detector Requirements
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Hermetic and 
multi-purpose detector

● Inclusive, 
semi-inclusive, 
exclusive  
measurements

● Jets, heavy quark 
● Diffractive and 

tagging 

Requirements are needed 
to fulfill the EIC physics 
program

[4] R. Abdul Khalek, et al. “EIC yellow report." Nuclear Physics A 1026 (2022): 122447



AI-assisted Design

7

● Majority of the technology choices have been made, and we expect to work mainly with 
continuous parameters.

● Examples: plenty of degrees of freedom to optimize in the central (e.g., tracking, dRICH) 
and in the far-forward/backward systems

AI-assisted tools (with human guidance), allow to achieve design 
goals (physics and detector performance, costs)

[5] CF et al., Nucl.Instrum.Meth.A 1047 (2023) 167748
[6] K. Suresh,interactive navigation of Pareto front, https://ai4eicdetopt.pythonanywhere.com/ 

Multi-Objective Optimization
Detector response Physics gains CostsAdaptive Experimentation 

● Learning the optimal 
compromises between 
competing objectives

● Holistic Optimization of ePIC

● Accelerate design process, 
understand tradeoffs, while 
optimizing costs

Cf. [6]

https://ai4eicdetopt.pythonanywhere.com/


Sim/Reco/Ana: ongoing activities/examples
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C. Peng [7]

ML PID with measured shower profiles from calorimetry 

For imaging calorimeter concept

CNN+MLP 

ML with shower 
imaging significantly 
improves PID and 
boosts pion rejection

Leptons (μ,e) ID with Deep Learning at EIC

W. Phelps [7]ECCE detector

R. Elayavalli [2]

Studied for STAR (potential application @sPHENIX, EIC)

● Focused on identifying jets originating from heavy quarks 
such as 𝑏 and 𝑐, as opposed to lighter quarks and gluons. 
Trained on jets produced with PYTHIA

JetVLAD

ML with shower 
imaging significantly 
improves PID and 
boosts pion rejection

CNN, MLP 

Jet identification Deeply learning Deep Inelastic Scattering

DIS events at ZEUS; possible application for EIC

DNN-based compare to electron, 
Jacquet-Blondel and the double-angle methods

M. Diefenthaler, et al. EPJC  82.11 [2]

…and many more activities

https://indico.bnl.gov/e/AI4EIC


Tutorials/
Documentation
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● Example from AI4EIC hackathon

○ PID with dRICH of ePIC using full simulations 
based on the ePIC SW stack 

Best solutions:
● JINR team: CatBoost
● Jets team: 2D CNN

*Problem 3: addition of noisy hits

● Tutorial/documentation for the hackathon:
○ Documentation (problem description and dataset): 

https://doi.org/10.5281/zenodo.7197023 

○ Provided example training scripts in both PyTorch and TensorFlow for a "plug 
and play" experience (focus on model development and insert it into our pipeline 
and have the training/evaluation code) 

○ Provided detailed description on how to utilize the framework, AWS 
environments, deal with resource contention, and perform distributed training for 
more advanced users

The best solutions were all Machine Learning/Deep Learning-based, they were quite 
original, and they outperformed solutions based on classical cut-based approaches 
(followed by some teams). While this is only a first step towards deeply learning the 
identification of particles reconstructed with the d-RICH, these exploratory studies clearly 
indicates the potential of ML/DL approaches for reconstruction and PID. https://ai4eichackathon.pythonanywhere.com/leaderboard

https://doi.org/10.5281/zenodo.7197023


Moving forward
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● Add machine learning libraries to the EIC environment 

● Tutorials/Documentations 

● Study flexible and efficient algorithms for SRO (work with stream of data robust against 
potential change in experimental conditions)

● Large-scale AI/ML architectures 

○ Considerations on scalability and specific infrastructure need

○ ML lifecycle; 

○ Distributed training: 

■ may become necessary in AI pipelines working with big data: training time 
exponentially increases, scalability cumbersome, other limitation factors 
(e.g., algorithm computational complexity outpaces the main memory) 

● …and more



Summary
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● The EIC community is active on AI/ML (not included are also funded AI activities for EIC): 

○ The number of AI/ML activities in ePIC is anticipated to grow in the next few months (e.g., reconstruction, PID) 
with more data from our simulation campaigns 

○ In the long-term, AI/ML will likely permeate and contribute to multiple aspects of near real-time analyses   

● Need support for interdisciplinary research and develop multi-disciplinary workforce: 

○ It would be advantageous to have a more coherent workforce on AI/ML (e.g., AI sub-WG) 

○ Educational/training activities simply necessary. This is a discussion that already started in the Computing and 
Software WG and the idea is to actively begin this year. 

● Transitioning from prototyping to deployment in production environments

● Not enough emphasis on algorithmic development 

○ e.g., we do not know what is the best ML/DL that we can do with Cherenkov detectors, though there are clear 
hints it is worth continuing these studies (event-level reco) 

● Robustness, explainability, also very important cross-cutting themes for applications in our field.

[8] Computational Nuclear Physics and AI/ML Workshop, 6-7 Sep 2022 
[9] P. Bedaque, et al. "AI for nuclear physics." The European Physical Journal A 57.3 (2021): 1-27.

https://eic.ai/ai-ml-references
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Hot & Cold QC Community
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Hot&Cold QCD Town Hall Meeting 424 participants

Two plenary talks on 
AI/ML

(exp and theory)

2 plenary talks on AI/ML (theory and experiment)

https://indico.mit.edu/event/538/registrations/participants


dRICH reconstruction 
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● Indirect Ray Tracing (IRT)

○ The basic idea is that, given tracking information and RICH PMT hits, the Cherenkov-photon emission angle can be 
reconstructed. 

○ The distribution of observed photon angles is compared to the expected angle for each particle type and the most 
likely particle type is determined.

○ Fast, non computationally intensive. Lowest accuracy compared to other methods in this slide.

● Direct Ray Tracing (DRT)

○ Simulates a PMT hit pattern based on the track kinematics and particle hypothesis 

○ Construct likelihood by comparing “PDF” to the observed hit pattern 

● Event-level algorithm (EVT)

○ Motivation: two close tracks can produce misidentification 

○ Builds upon DRT. Improvement by looking at each event as a whole 
rather than individual tracks 

■ → sum over all tracks in the event

R. M. Lamb, PhD thesis, 2010, The Boer-Mulders and Cahn effects: Azimuthal modulations in the spin-independent SIDIS cross section 
at HERMES, https://inspirehep.net/literature/872161 

* analogy with different approaches discussed for DIRC

https://inspirehep.net/literature/872161


AI/ML in SRO
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The development of streaming readout (SRO) for 
the NP driven by research initiatives:

● Streaming Grand Challenge [1] and the facility for 
“Innovation in Nuclear Data Readout and Analysis” 
(INDRA) at JLab 

● BNL LDRD "High Throughput Advanced Data 
Acquisition for eRHIC, Particle Physics and 
Cosmology Experiments" 

● PHENIX, STAR and sPHENIX (BNL), 
KM3NeT(INFN), BDX (JLAB) and CBM (FAIR)  

[1] A. Boehnlein, R. Ent, and R. Yoshida, Grand Challenge in Readout and Analysis for Femtoscale Science, 2018
[2] F. Ameli, et al., Streaming readout for next generation electron scattering experiments, Eur. Phys. J. Plus, 2022

[3] M. Diefenthaler et al., Diefenthaler, Markus, et al. Evaluation & Development of Algorithms & Techniques for Streaming Detector Readout. No. 2020-LDRD-LD2014. 2020.
[4] T. Jeske, et al. "AI for Experimental Controls at Jefferson Lab." JINST 17.03 (2022): C03043. — AI4EIC proceedings

[5] T. Britton, B. Nachman. "Accelerator and detector control for the EIC with machine learning." JINST 17.02 (2022): C02022. — AI4EIC proceedings
[6] S. Furletov et al., Machine learning on FPGA for event selection — AI4EIC proceedings

SRO for next generation electron scattering [2]
ML deployed on stream of real data CLAS + EPSCI @JLab

Courtesy of M. Battaglieri (JLab)
SRO Grand Challenge [1]

Aim to remove separation of data readout and analysis 
 take advantage of modern electronics, computing, and analysis

Many active projects regarding SRO at JLab: 
INDRA/ASTRA [3], AIEC (AI for Experimental Control) [4], Hydra 
(Online monitoring) [5], SRO with ML on FPGA [6]



AI/ML in SRO
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Courtesy of J. Huang (BNL) [1]

Identify D/B hadrons with real-time ML
● Topology of D/B decays
● Monitor collision vertex
● Feedback for improvement

The challenges:
Very high p+p collision rate: ~3MHz

Low rate of rare signals: ~150Hz (beauty for eg) 

Limited DAQ trigger bandwidth: ~15 kHz 

 (or 0.5% of p+p collisions)

No effective conventional triggers available

FastML: Fast Data Processing and Autonomous Detector Control for sPHENIX and Future EIC Detectors

Courtesy of Ming Liu (LANL)

[1] Huang, Yi, et al. "Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder." 2021 20th IEEE (ICMLA). IEEE, 2021.
[2] F. Fahim, et al., “HLS4ML” arXiv:2103.05579 (2021)

Intelligent Experiment Through Real-Time AI 
(DOE FOA funded 2022-2023) 

Collaboration of NP, HEP and CS:
LANL, MIT, FNAL, NJIT, ORNL, UNT, CCNU

Talk @ QNP2022 AI/ML for SRO

https://indico.jlab.org/event/344/contributions/10499/attachments/8253/11854/AI%20in%20StreamingDAQ.pdf


Unfolding and “data-driven” learning 
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Unfolding     Lepton-jet correlation in DIS at H1 [1]
Courtesy of B. Nachman Courtesy of M. Arratia (UCR), B. Nachman

● First example of ML-assisted unfolding 
(MultiFold method): enables simultaneous 
and unbinned unfolding in high 
dimensions. 

● This development will allow us to do 
unbinned cross-section measurements

● Similarly, this could be applied at EIC

[1] V. Andreev et al. (H1 Collaboration), “Measurement of 
Lepton-Jet Correlation in Deep-Inelastic Scattering with 
the H1 Detector Using Machine Learning for Unfolding” 

Phys. Rev. Lett. 128, 132002

Using ML for differential cross section measurements 
(OmniFold and otherwise).  These tools for recent 
measurements with DIS from HERA data and the 

same tools could be used at the EIC.

OmniFold [1]

A. Andreassen, P. T. Komiske, E. M. Metodiev, B. 
Nachman, and J. Thaler “OmniFold: A Method to 

Simultaneously Unfold All Observables”  Phys. 
Rev. Lett. 124, 182001  2020

In the “opposite” direction, it could be exciting 
thinking about data-driven learning that relies 

less on simulations, with tools like, e.g., 
one-class classification / anomaly-detection 

[1] and weak supervision / topic modeling [2]. 

[1] C. Fanelli, J. Giroux, and Z. Papandreou. 
“Flux+ Mutability": A Conditional Generative Approach to 
One-Class Classification and Anomaly Detection." 
arXiv:2204.08609 (2022).
[2] M. LeBlanc, B. Nachman, and C. Sauer. "Going off topics to 
demix quark and gluon jets in αS extractions." 
arXiv:2206.10642 (2022).

Flux+Mutability [1] cAE + cMAF + HDBSCAN

Same architecture applied to n/γ showers reconstruction in GlueX
and BSM dijet signatures at LHC

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.132002
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.182001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.182001


Leitmotif in AI/ML
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Uncertainty Quantification Robustness

Courtesy of B. Nachman (LBNL) Courtesy of M. Williams (MIT/IAIFI)

[1] O. Kitouni, N. Nolte, M. Williams “Robust and Provably 
Monotonic Networks”, arXiv:2112.00038

● The Lipschitz constant of the map between the input and output 
space represented by a neural network is a natural metric for 
assessing the robustness of the model.

● This new method constrains the Lipschitz constant of dense DL 
models (can also be generalized to other architectures). The  
method relies on a simple weight normalization scheme during 
training that ensures the Lipschitz constant of every layer is below 
an upper limit specified by the analyst. 

● The algorithm was used to train a powerful, robust, and 
interpretable discriminator for heavy-flavor decays in the LHCb 
realtime data-processing system.

● LHCb has adopted this for the major selection algorithms, and 
looking at it for PID, fake-track killers.

statistical (aleatoric) / systematic (epistemic)
model biasdecrease with more events

[1] B. Nachman, “UQ for ML Applied to Data Analysis”, talk at 
AI4EIC Meeting on Uncertainty Quantification

[2] B. Nachman, How to achieve optimality and account for 
uncertainty, arXiv:1909.03081

“If the network architecture is not flexible enough it may be that the likelihood ratio is not 
well-approximated. This means that the procedure will be suboptimal and will not achieve the 

best possible precision. However, if the classifier is well-modeled by the simulation, then 
p-values computed from the classifier may be accurate, which means that the results are 

unbiased. Conversely, a well-trained network may result in a biased result if the simulation 
used to estimate the p-value is not accurate.”

inference/uncertainty-aware approaches 

https://indico.bnl.gov/event/16073/

