i

algorithms

- The case for framework- and
f‘f‘ﬁ- experiment-independent algorithms at
N ERIC ePIC

Sylvester Joosten
on behalf of CompSW & SImQA

ePIC Collaboration Meetin
January 9, 202

e Finished Software Choice process by early

August
e \Went through rigorous Software Review in &
September -y

e Migrated the software from proposal period
into our common Software Stack in only a
few months

o Including the implementation of fully
new reconstruction framework code
(EICRecon)

e This presentation will propose a path
forward, but first want to fully acknowledge
where we are right now!

How do we go from here? Zoom in on our weak points

e Had to “cut some corners” to get where we are in the time we had
o Framework code rigid and tending towards the monolithic
o Overly reliant on C++ for all aspects of the reconstruction
o Overly centralized decision process
o Unsustainable responsibility load for core developers requiring
involvement levels (high risk of burn-out)
o Design (out of necessity) by a small group under extreme time

pressure
m No time for holistic design inside the software stack
m No time to engage Users in the design process
m No time to focus on forward sustainability, ...

e Not a knock on the software choices or the work performed! | view what
we accomplished in the last few months as a great success!
e Consider the current EICRecon as a Software Prototyping stage
o Strong proof of concept - it can be done with the current
technologies!
o Learned valuable lessons early to map our path forward for the
decades to come

The case for “Hardcore” modularism

Starting from the EIC Software Statement of Principles

e We will leverage heterogeneous computing:

* We will enable distributed workflows on the computing resources of the
worldwide EIC community, leveraging not only HTC but also HPC
systems.

e EIC software should be able to run on as many systems as possible,

while supporting specific system characteristics, e.g., accelerators such
as GPUs, where beneficial.

* We will have a modular software design with structures robust against
changes in the computing environment so that changes in underlying
code can be handled without an entire overhaul of the structure.

o We will aim for user-centered design: °

* We will enable scientists of all levels worldwide to actively participate in
the science program of the EIC, keeping the barriers low for smaller
teams.

¢ EIC software will run on the systems used by the community, easily.

® \We aim for a modular development paradigm for algorithms and tools
without the need for users to interface with the entire software
environment.

Need more rigorous separation of different
domains:

o Framework

o Algorithms

o Configuration
o Resources

o User workflow
@]

This will enhance user experience, improve
maintainability, increase flexibility against
future changes, reduce scope of developer
responsibility (everyone is the ruler of their
own realm)

User centered design

e Need to support workflows actually needed by the Users
o Create, test, and run a new reconstruction algorithm
with minimal work, support new stand-alone plugins

with minimal friction

o Evaluate changes in geometry by changing only the
geometry definition and relevant configuration file (no
need to change/recompile everything) - again,

minimize friction

o Get reproducible (and easily altered) reconstruction
configurations without needing to do any additional
work (zero-friction reproducibility)

o Provide domains of responsibility where Users of all
experience levels can make meaningful contributions

o Distinct domains of responsibility also make clear who
to talk to, no more single persons supporting

everything at once.

Bottom-line: need to revisit design choices based on user requirements and

real-world experience.

?

Project
start eﬁne user
‘ requnements

USER CENTRED
DESIGN

Product Concept
launch design

Fleld trials User testing
Detaﬂed of prototypes
design

Evolving of the EPIC reconstruction stack design

e Strictly modular approach Resource: DD4hep Framework: JANA2 Configuration generator
reduces scope of each » _ .
component Geometry definition [| [...] Addon: PODIO support Text editor

° Easier to onboard new Addon: algorithms support Web application

users in any singular
piece of the stack

Static EIC data

Addon: EIC Services [...] Database client m

Addon: Streaming Support - .
/ Configuration files
Addon: Configuration engine
digitization.toml
Resource: algorithms mm [...]

Material map

e Every user can find their .
place based on j’mjg M

experience and needs

e Better maintainability and Resource: Data Model
more resilient against

Component: Tracking

changing software needs Legend

‘ ‘ External
resource

EIC Resource Application (user)

Resource: ACTS Component: Calorimetry ‘ H Infrastructure |

e Baked-in reproducibility
by enforcing configuration Resource: TFLite
files in every workflow

Component: PID

Resources: [...]

Components: [..] Reconstruction stack design v2.2

Strawman approach ticks quite some boxes

o We aim to develop a diverse workforce, while also cultivating
an environment of equity and inclusivity as well as a culture of
belonging.

o We will have an unprecedented compute-detector integration:

* We will have a common software stack for online and offline software,
including the processing of streamed data and its time-ordered
structure.

* We aim for autonomous alignment and calibration.

® We aim for a rapid, near-real-time turnaround of the raw data to online
and offline productions.

o We will leverage heterogeneous computing:

¢ We will enable distributed workflows on the computing resources of the
worldwide EIC community, leveraging not only HTC but also HPC
systems.

¢ EIC software should be able to run on as many systems as possible,

while supporting specific system characteristics, e.g., accelerators such
as GPUs, where beneficial.

¢ We will have a modular software design with structures robust against
changes in the computing environment so that changes in underlying
code can be handled without an entire overhaul of the structure.

o We will aim for user-centered design:

¢ We will enable scientists of all levels worldwide to actively participate in
the science program of the EIC, keeping the barriers low for smaller
teams.

o EIC software will run on the systems used by the community, easily.

* We aim for a modular development paradigm for algorithms and tools
without the need for users to interface with the entire software
environment.

e Our data formats are open, simple and self-descriptive:

* We will favor simple flat data structures and formats to encourage
collaboration with computer, data, and other scientists outside of NP
and HEP.

* We aim for access to the EIC data to be simple and straightforward.

o We will have reproducible software:

 Data and analysis preservation will be an integral part of EIC software
and the workflows of the community.

* We aim for fully reproducible analyses that are based on reusable
software and are amenable to adjustments and new interpretations.

a We will embrace our community:

* EIC software will be open source with attribution to its contributors.

* We will use publicly available productivity tools.

* EIC software will be accessible by the whole community.

* We will ensure that mission critical software components are not
dependent on the expertise of a single developer, but managed and
maintained by a core group.

* We will not reinvent the wheel but rather aim to build on and extend
existing efforts in the wider scientific community.

* We will support the community with active training and support sessions
where experienced software developers and users interact with new
users.

* We will support the careers of scientists who dedicate their time and
effort towards software development.

o We will provide a production-ready software stack throughout the
development:

* We will not separate software development from software use and
support.
¢ We are committed to providing a software stack for EIC science that
continuously evolves and can be used to achieve all EIC milestones.
* We will deploy metrics to evaluate and improve the quality of our
software.
* We aim to continuously evaluate, adapt/develop, validate, and integrate
new software, workflow, and computing practices. 7

Why generic algorithms? What are the design goals?

e Enable algorithm sharing across experiments
and even communities.
o ACTS illustrates that this can be highly
successful
e Framework-agnostic algorithms reduce scope

and requirements of what Users (algorithm ‘

writers) need to deal with - lower barrier of

entry
e Software stack already has the required

interfaces to facilitate this -

EDM4hep/EDM4eic data model and DD4hep

geometries ' ‘
e Can minimize the boilerplate by taking out

explicit framework responsibilities - reduced

friction for the Users

7/
That sounds nice in theory, but is this even possible? ;l

e ... Yes! As a matter of fact, we have had a
working prototype for algorithms for months!
o Standalone prototype library:
https://github.com/eic/algorithms
(documentation coming once API design
complete)
o Has been part of the Juggler
reconstruction flow for almost half a year
o JANAZ2 integration coming soon (February
2 CompSW+SimQA meeting)
m APl design considered complete once
successfully integrated with two
frameworks

https://github.com/eic/algorithms

What does an algorithms

ClusteringAlgorithm = Algorithm<
Input<edmdeic::ProtoClusterCollection, std::
Output<edmdeic::ClusterCollection,

std:: <edmdeic: :MCRecoClusterParticleAssociationCollection>>>;

<edm4hep: :SimCalorimeterHitCollection>>,

ClusterRecoCoG : ClusteringAlgorithm {

WeightFunc = std:: <double(double, double, double)>;
TODO
ClusterRecoCoG(std::

: ClusteringAlgorithm{name,
{"inputProtoClusterCollection", "mcHits"},
{"outputClusterCollection", “"outputAssociations"},

"Reconstruct a cluster with the Center of Gravity method. For "
"simulation results it optionally creates a Cluster <-> MCParticle "
"association provided both optional arguments are provided."} {}

name)

void init()

void process(Input&, Output&)

edmdeic: :MutableCluster reconstruct(

edmdeic::ProtoCluster&)

TODO FIXME
Property<double> m_sampFrac{ , "samplingFraction", 1.0
Property<double> m_logWeightBase{ , "logWeightBase", 3 "Weight base for log weighting"};
Property<std:: > m_energyWeight{ , "energyWeight", "log", "Default hit weight method"};
Property<std:: > m_moduleDimZName{ , "moduleDimZName", "", "z-dim name of the module"};

'Sampling fraction"};

Property<bool> m_enableEtaBounds{ , "enableEtaBounds", true, "Constrain cluster to hit eta?"};
WeightFunc m_weightFunc;

GeoSvc& m_geo = GeoSvc::instance();

algorithm look like?

Define limited user functions (init and
process)
Fully declarative in nature:

o Algorithms signature defined once,
automatically drives data store
interactions at framework side

o Properties defined once with as
one-liners, drives the configuration
setup at the framework side.

o Documentation fields required in all
cases

Bottom line - No repetition:
User defines everything only once 10

e/

‘ ‘ Resource: DD4hep ‘ Framework: JANA2 Configuration generator

Geometry definition m

Static EIC data
Fleld map -

Resou rce: Data Model

Addon: PODIO support ‘ Text editor |

Addon: algorithms support Web application

Database client ‘m

Proposed path forward?

Addon: EIC Services H [

Addon: Streaming Support

Addon: Configuration engine

digitization.toml

omm

e Ensure a continued stable software stack,

Resource: algorithms

need to support EICRecon while we | - |
p re pa re a n a I te rn ative ro ute Resource: TFLite Component: PID
Resources: [...] Components: [...] Reconstruction stack design v2.2

e Prepare a full prototype of algorithms by
February 2 software meeting (with full
JANAZ integration)

e Crystalize the different realms of our
reconstruction stack, identify key persons
to manage each realm.

o In particular, identify technological
solutions to be implemented

e Start seamless migration (cannot impact
operations) starting February 2023

What are the challenges for truly generic algorithms??

e Providing framework functionality while being a thin layer
on top of multiple frameworks non-trivial
o What to do with services? Context? Data store
interactions? Properties and configuration?
o Need to avoid duplication of definitions
How to minimize boilerplate (zero-line algorithm

integration)?
o Need showcase in multiple frameworks (JANA2
and Gaudi)
e But... it doesn’t make sense to separate all algorithms, I
what about fine-tuned capabilities for e.g. DAQ

o Correct, not everything should be a generic
algorithm.

o But most code (80-90%) could be, and | argue that
the Users will greatly benefit from this.

13

What does an algorithms algorithm look like (2/2)?

ClusteringAlgorithm = Algorithm<
Input<edmdeic::ProtoClusterCollection, std:: <edm4hep: :SimCalorimeterHitCollection>>,
Output<edmdeic::ClusterCollection,

std:: <edmdeic: :MCRecoClusterParticleAssociationCollection>>>;

Supports definition of standard
(required) Collections, optional
Collections, and vectors of Collections
(e.g. hits from different detectors)

ClusterRecoCoG : ClusteringAlgorithm {

void ClusterRecoCoG::process|(ClusterRecoCoG: : Input& input,

T No explicit data store interactions, we

auto [proto, opt_simhits] = input;

SN v v i get pointers to data collections managed

(auto& pcl : *proto) {

R by the framework that are guaranteed to

(aboveDebugThreshold()) { be Valld-
debug() << cl.getNhits() << " hits: " << cl.getEnergy() / dd4hep::GeV << " GeV, ("

<< cl.getPosition().x / dd4hep::mm << ", " << cl.getPosition().y / dd4hep::mm << ", "
<< cl.getPosition().z / dd4hep::mm << ")" << endmsg;

}

clusters->push_back(cl);

14

How do we integrate services?

e Services as lazy-evaluated singletons

e Support standalone minimal interface

e setypes nstane) ¢ o Interface has usable defaults for

e standalone operation

en 1 s am wning (avots cireary < o Standalone defaults are meant to

be overridden by the framework by

defining callbacks

e Prototype currently implements LogSvc,
GeoSvc, and RandomSvc

e Special ServiceSvc provides framework
with all required services, so it can

handle the bindings

SvcType> Service : PropertyMixin, NameMixin {

dss > lock(m);
1 {N\n", logLevelName(l), caller, ms

};
ALGORITHMS_DEFINE_SERVICE(LogSvc)

15

What about Properties?

edmdeic: :MutableCluster reconstruct(edmdeic: :ProtoCluster&)

Property<double> m_sampFrac{ , "samplingFraction", 1.0};
Property<double> m_logWeightBase{ , "logWeightBase", 3.6};
Property<std:: > m_energyWeight{ , "energyWeight", "log"};

Property<std:: > m_moduleDimZName{ , "moduleDimZName", ""};

[§roperty<bool> m_enableEtaBounds{ , "enableEtaBounds", true};
WeightFunc m_weightFunc;

GeoSvc& m_geo = GeoSvc::instance();

Need a way to define properties for
algorithms

|deally they should provide for a
programatic way to deal with automatic
initialization at the framework end
(non-trivial)

Currently choose a Gaudi-like Property<T>
class that has run-time performance of a
bare T, while providing an avenue for the
framework to set the property

Automatic handling possible through a
visitor pattern (framework side works
automagically!)

16

Open challenges

e Self-announcing algorithms (so the
framework can query on plugin load what
algorithms are available)

e Rigorous context management (APl already
defined)

e JANAZ integration and re-evalutation of
service API to properly serve both JANA2
and Gaudi

e Finish porting the rest of the Juggler
algorithms (algorithms shares a history with
Juggler so retains full git history!)

This is a short list - can have this in the next few weeks!

17

