
algorithms 
The case for framework- and 

experiment-independent algorithms at 
EPIC ePIC

Sylvester Joosten
on behalf of CompSW & SimQA

EP
IC

ePIC Collaboration Meeting
January 9, 2023



2

Let’s take a second to appreciate how far we’ve come!
● Finished Software Choice process by early 

August
● Went through rigorous Software Review in 

September
● Migrated the software from proposal period 

into our common Software Stack in only a 
few months

○ Including the implementation of fully 
new reconstruction framework code 
(EICRecon)

● This presentation will propose a path 
forward, but first want to fully acknowledge 
where we are right now!

EP
IC



3

How do we go from here? Zoom in on our weak points
● Had to “cut some corners” to get where we are in the time we had

○ Framework code rigid and tending towards the monolithic
○ Overly reliant on C++ for all aspects of the reconstruction
○ Overly centralized decision process
○ Unsustainable responsibility load for core developers requiring 

involvement levels (high risk of burn-out) 
○ Design (out of necessity) by a small group under extreme time 

pressure
■ No time for holistic design inside the software stack
■ No time to engage Users in the design process
■ No time to focus on forward sustainability, …

● Not a knock on the software choices or the work performed! I view what 
we accomplished in the last few months as a great success!

● Consider the current EICRecon as a Software Prototyping stage
○ Strong proof of concept - it can be done with the current 

technologies!
○ Learned valuable lessons early to map our path forward for the 

decades to come

EP
IC



4

The case for “Hardcore” modularism 
Starting from the EIC Software Statement of Principles

● Need more rigorous separation of different 
domains:

○ Framework
○ Algorithms
○ Configuration
○ Resources
○ User workflow
○ …

● This will enhance user experience, improve 
maintainability, increase flexibility against 
future changes, reduce scope of developer 
responsibility (everyone is the ruler of their 
own realm)

EP
IC



5

User centered design

● Need to support workflows actually needed by the Users
○ Create, test, and run a new reconstruction algorithm 

with minimal work, support new stand-alone plugins 
with minimal friction

○ Evaluate changes in geometry by changing only the 
geometry definition and relevant configuration file (no 
need to change/recompile everything) - again, 
minimize friction

○ Get reproducible (and easily altered) reconstruction 
configurations without needing to do any additional 
work (zero-friction reproducibility)

○ Provide domains of responsibility where Users of all 
experience levels can make meaningful contributions

○ Distinct domains of responsibility also make clear who 
to talk to, no more single persons supporting 
everything at once.

Bottom-line: need to revisit design choices based on user requirements and 
real-world experience.

EP
IC



6

Evolving of the EPIC reconstruction stack design
● Strictly modular approach 

reduces scope of each 
component

● Easier to onboard new 
users in any singular 
piece of the stack

● Every user can find their 
place based on 
experience and needs

● Better maintainability and 
more resilient against 
changing software needs

● Baked-in reproducibility 
by enforcing configuration 
files in every workflow

EP
IC



7

Strawman approach ticks quite some boxes EP
IC



8

Why generic algorithms? What are the design goals?

● Enable algorithm sharing across experiments 
and even communities. 

○ ACTS illustrates that this can be highly 
successful

● Framework-agnostic algorithms reduce scope 
and requirements of what Users (algorithm 
writers) need to deal with - lower barrier of 
entry

● Software stack already has the required 
interfaces to facilitate this - 
EDM4hep/EDM4eic data model and DD4hep 
geometries

● Can minimize the boilerplate by taking out 
explicit framework responsibilities - reduced 
friction for the Users

EP
IC



9

That sounds nice in theory, but is this even possible?

● … Yes! As a matter of fact, we have had a 
working prototype for algorithms for months!
○ Standalone prototype library: 

https://github.com/eic/algorithms 
(documentation coming once API design 
complete)

○ Has been part of the Juggler 
reconstruction flow for almost half a year

○ JANA2 integration coming soon (February 
2 CompSW+SimQA meeting)
■ API design considered complete once 

successfully integrated with two 
frameworks

EP
IC

https://github.com/eic/algorithms


10

What does an algorithms algorithm look like?

● Define limited user functions (init and 
process)

● Fully declarative in nature:
○ Algorithms signature defined once, 

automatically drives data store 
interactions at framework side

○ Properties defined once with as 
one-liners, drives the configuration 
setup at the framework side. 

○ Documentation fields required in all 
cases

EP
IC

Bottom line - No repetition:
User defines everything only once



11

Proposed path forward?
● Ensure a continued stable software stack, 

need to support EICRecon while we 
prepare an alternative route

● Prepare a full prototype of algorithms by 
February 2 software meeting (with full 
JANA2 integration)

● Crystalize the different realms of our 
reconstruction stack, identify key persons 
to manage each realm.
○ In particular, identify technological 

solutions to be implemented
● Start seamless migration (cannot impact 

operations) starting February 2023

EP
IC



12

Thank you!



13

What are the challenges for truly generic algorithms?

● Providing framework functionality while being a thin layer 
on top of multiple frameworks non-trivial

○ What to do with services? Context? Data store 
interactions? Properties and configuration?

○ Need to avoid duplication of definitions
○ How to minimize boilerplate (zero-line algorithm 

integration)?
○ Need showcase in multiple frameworks (JANA2 

and Gaudi)
● But… it doesn’t make sense to separate all algorithms, 

what about fine-tuned capabilities for e.g. DAQ
○ Correct, not everything should be a generic 

algorithm. 
○ But most code (80-90%) could be, and I argue that 

the Users will greatly benefit from this.

EP
IC



14

What does an algorithms algorithm look like (2/2)?

No explicit data store interactions, we 
get pointers to data collections managed 
by the framework that are guaranteed to 
be valid.

Supports definition of standard 
(required) Collections, optional 
Collections, and vectors of Collections 
(e.g. hits from different detectors)

EP
IC



15

How do we integrate services?
● Services as lazy-evaluated singletons
● Support standalone minimal interface

○ Interface has usable defaults for 
standalone operation

○ Standalone defaults are meant to 
be overridden by the framework by 
defining callbacks

● Prototype currently implements LogSvc, 
GeoSvc, and RandomSvc

● Special ServiceSvc provides framework 
with all required services, so it can 
handle the bindings

EP
IC



16

What about Properties?

● Need a way to define properties for 
algorithms

● Ideally they should provide for a 
programatic way to deal with automatic 
initialization at the framework end 
(non-trivial)

● Currently choose a Gaudi-like Property<T> 
class that has run-time performance of a 
bare T, while providing an avenue for the 
framework to set the property

● Automatic handling possible through a 
visitor pattern (framework side works 
automagically!)

EP
IC



17

Open challenges

● Self-announcing algorithms (so the 
framework can query on plugin load what 
algorithms are available)

● Rigorous context management (API already 
defined)

● JANA2 integration and re-evalutation of 
service API to properly serve both JANA2 
and Gaudi

● Finish porting the rest of the Juggler 
algorithms (algorithms shares a history with 
Juggler so retains full git history!)

This is a short list - can have this in the next few weeks!

EP
IC


