Background and track reconstruction studies

Reynier Cruz-Torres Lawrence Berkeley National Laboratory

Presenting work done by lots of people: J. Adam, E. Aschenauer, W. Deconinck, J. Huang, A. Jentsch, K. Kauder, D. Lawrence, J. Nam, J. Osborn, B. Sterwerf, Z. Zhang, ...

Electron Proton-Ion Collider Experiment Collaboration January 10th, 2023

Outline

Backgrounds at the EIC

- Synchrotron radiation
- Primary collisions
 - Ionization radiation
 - Low Energy Neutron Radiation
- Beam-gas induced
 - Electron-gas interactions
 - Hadron-gas interactions

Wiki page to document background studies

Outline

Backgrounds at the EIC

- Synchrotron radiation
- Primary collisions
 - Ionization radiation
 - Low Energy Neutron Radiation
- Beam-gas induced
 - Electron-gas interactions
 - Hadron-gas interactions

Signal

Wiki page to document background studies

Outline

Backgrounds at the EIC

- Synchrotron radiation
- Primary collisions
 - Ionization radiation
 - Low Energy Neutron Radiation
- Beam-gas induced
 - Electron-gas interactions
 - Hadron-gas interactions

Wiki page to document background studies

Synchrotron radiation

- Caused by quads and bending magnet upstream of IP

Simulations based on Synrad+ (by M. Stutzman)

- virtual cylinder placed just inside the IR beampipe
- Electrons are propagated through B field
- resulting photons passing through cylinder are recorded

Output: hepmc file with single-photon "events" containing information related to photon vertex, momentum, and weight corresponding to equivalent photons / sec

Need

A series of events with many photons corresponding to a time integration window.

Synchrotron radiation event generator

Define an integration window (IW)

```
integral = 0
while integral < IW:
    Randomly sample photon, add it to event
    integral += 1/flux
return event
```

Sample as many photons as fit in the defined time integration window

Synchrotron radiation event generator

Updated - EPIC

Synchrotron radiation results

Impact of gold coating in the beampipe

Study by Ben Sterwerf, **RCT**, et al.

See more details here

Updated - EPIC

Synchrotron radiation results

Primary Collisions

-Primary collisions \rightarrow substantial fraction of ionizing radiation and low-energy neutron flux in the hall -Simulations based on Pythia 6 tuned to HERMES, COMPASS and HERA with $Q^2 > 10^{-9}$ GeV²

Study by Alex Jentsch, et al.

See more details <u>here</u>

Interaction of beam particles with residual gas molecules in the beam pipe can impact detector performance and/or mimic physics signals

- main contribution to detector background are from Bethe-Heitler process:

 $e_{\text{beam}} + H_{\text{rest gas}}^2 \rightarrow e' + \gamma + H_{\text{rest gas}}^2$

off-momentum electrons will be shielded by collimators (detailed simulations of collimation system are underway)

See mode details here

Electron Beam-Gas interactions

vacuum after 10000 Ah (running of 5 month at 10^{34} cm²s⁻¹)

Hadron Beam-Gas interactions

- -concerning large hadronic cross section of the $p/A_{\text{beam}} + H_{\text{rest gas}}^2$ interactions
- of neutrons that thermalize within the detector hall

-Secondary interactions of produced particles with detector components is one of the main sources

Background comparisons

Testing background impact

Need to simulate dataset that emulates true EIC environment as precisely as possible

- mix signal and background sources

- propagate sample through GEANT simulation to assess impact on detector performances

x and y weighted TrackerEndcapHits distribution for 5µm golde6

Progress on realistic track reconstruction

Seeding: retrieval of ≥ 3 space points that can form a track prototype.

- -Most studies in EPIC with truth seeding*
- *Truth seeding: the actual (experimentally unknown) group of hits associated with a track is given to the Kalman filter
- Realistic seeding is crucial to study background impact

-In ACTS: initial helical fit performed (inside the seeder) to initialize the combinatorial Kalman filter.

Study by Yue Shi Lai, et al.

Progress on realistic track reconstruction

Seeding: retrieval of ≥ 3 space points that can form a track prototype.

- -Most studies in EPIC with truth seeding*
- *Truth seeding: the actual (experimentally unknown) group of hits associated with a track is given to the Kalman filter
- Realistic seeding is crucial to study background impact

-In ACTS: initial helical fit performed (inside the seeder) to initialize the combinatorial Kalman filter.

Study by Yue Shi Lai, et al.

Progress on realistic track reconstruction

- -A functioning binned seeder exists, with some caveats (resulting from the large η range and low p that is unusual for hadron collider ACTS was developed for)
- -A unbinned "orthogonal" seeder is being developed, which may address the issue of the binned seeder

- Binned seeder, Juggler & ACTS 19.9/20.3
- Mostly 1 seed/track, but some 3 or 4 seeds/track
- $\approx 2\%$ of seeds fail due to issues with binned seeder
- Forward $\Delta p/p$ deteriorated vs. truth seeding (~1.5%)

Summary and Conclusions

- force was formed
- studies on other backgrounds are underway
- -Largest background source expected to be beam gas interactions
- -Currently working on functionality to combine backgrounds and signal
- impact on track reconstruction
- -Realistic track reconstruction is underway

-Several background sources have been identified and studied. Recently, a background task

-Most background studies have been updated with newest EPIC detector version. Updated

-Next step will be to study background impact on detector performance and physics, e.g.

e'

Backup

Vertex z distribution in hadron beam gas

Synchrotron radiation results

Synchrotron event generator code https://github.com/reynier0611/SR_event_generator

1. Download csv file stored here. You can get this file following one of the two methods below: wget -O combined_data.csv 'https://drive.google.com/uc?export=download&id=1XX78_qeuoMK8xhuOB5QgbU or curl -L 'https://drive.google.com/uc?export=download&id=1XX78_qeuoMK8xhuOB5QgbUyye7Lv_xPg&confirm 2. Create a yaml configuration file (e.g. config.yaml) with the following information: input_single_photons : path to csv file downloaded in step 1. 0 n_events : number of events to be generated. 0 integration_window : time window that will define one event. 0 seed : random seed for reproducibility. Set to 0 to leave the seed unconstrained. 0

3. Run the generator as:

python3 sr_generator.py --configFile config.yaml

Links to previous studies

Jin Huang - Beam gas, neutron flux, radiation does at EIC

Elke Aschenauer - EIC Physics and Detector

Wiki - ePIC Background

Wiki - ATHENA Background

Wiki - beam backgrounds

