#### **PAUL E REIMER**



# **EPIC CALORIMETRY WG**



Newport News, VA 10 January 2023 Thanks to Calo WG, Conveners and esp. Alexander Kiselev, Alexander Baxilevsky and Elke C Aschenauer whose slides I've borrowed



.s. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

This work was partially supported under grant DE-AC02-06CH11357 from the US Department of Energy, Office of Nuclear Physics

# CALORIMETRY

Why do we need what we need where it is?





**Electromagnetic calorimeter**  $\rightarrow$  Measure photons (E, angle), identify electrons

PbWO<sub>4</sub> Crystals (backward), W/SciFi Spacal (forward) Barrel: Pb/SciFi+imaging part or new Scintillating glass

 $\begin{array}{l} \mbox{Hadron calorimeter} → \mbox{Measure charged hadrons, neutrons and $K_L^0$ challenge achieve ~50%/√E + 10% for low E hadrons (<E> ~ 20 GeV) \\ \mbox{Fe/Sc sandwich with longitudinal segmentation} \end{array}$ 





## **E&M** CALORIMETRY

#### Electron/photon PID, energy, angle/position: Coverage (in rapidity and energy),

resolution,  $e/\pi$ , granularity, projectivity



## 

Electron/photon PID, energy, angle/position: Coverage (in rapidity and energy), resolution,  $e/\pi$ , granularity, projectivity



 $10^{3}$ 

 $10^{2}$ 



### **E&M** CALORIMETRY

As documented in YR and "General, Functional, and Performance Requirements for the EIC Detector Systems"

|          | $\sigma_{E}/E$                              | E range, GeV | <b>π<sup>±</sup> suppression</b><br>(w/other subsystems) | πº/γ discr.    |
|----------|---------------------------------------------|--------------|----------------------------------------------------------|----------------|
| e-endcap | $\frac{(2-3)\%}{\sqrt{E}} \oplus (1-2)\%$   | 0.05-18 GeV  | Up to 10 <sup>4</sup>                                    | Up to 7 GeV/c  |
| Barrel   | $\frac{\sqrt{E}}{\sqrt{E}} \oplus (1-3)\%$  | 0.05-50 GeV  | Up to 10⁴                                                | Up to 10 GeV/c |
| h-endcap | $\frac{(10-12)\%}{\sqrt{E}} \oplus (1-3)\%$ | 0.1-100 GeV  | Up to 10 <sup>4</sup>                                    | Up to 50 GeV/c |

- Continuous acceptance (particularly from eendcap to barrel)
- Minimal material budget on the way from the vertex (particularly for e-endcap to barrel)

U.S. Department of U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- Photosensors and FEE tolerate magnetic field
- Operate at full luminosity and expected background conditions (rad. dose, neutron flux)



## **E-ENDCAP: PBWO**<sub>4</sub>

Well established technology

Compact & High granularity:  $2 \times 2 \times 20$  cm<sup>3</sup>

High resolution: 
$$\frac{\sigma_E}{E} = (0.4 - 1)\% \oplus \frac{(2-3)\%}{\sqrt{E}}$$

Excellent e/ $\pi$  capabilities:  $\pi$  suppres. a few 10<sup>3</sup> Radiation hard: >1000 krad



Temperature sensitive: d(LightYield)/dT = -(2-3)%/°C



√ Jlab-PrimEx eta/NPS PWO EMCal prototype

#### Consortium with >10 institutions

Extensive experience from recent PANDA (GSI) and CMS (CERN)



## H-ENDCAP: W/SCIFI

Established technology: sPHENIX barrel EMCal Compact:  $X_0 = 0.7$ cm High granularity:  $R_m = 2cm$ Sampling Fraction: 2-3% Modest Resolution:  $\frac{\sigma_E}{E} \sim 3\% \oplus \frac{13\%}{\sqrt{E}}$ Tow. A hodo: 2%(δ p/p) ⊕ 3.2(0.1)% ⊕ 13.8(0.2)%/IE പ് **BNL-sPHENIX**: ■ Tow. A clust: 2%(δ p/p) ⊕ 2.7(0.1)% ⊕ 15.8(0.3)%/ E ≍<sub>€</sub>0.12 Simulation: 2%(δ p/p) ⊕ 3.04(0.05)% ⊕ 12.6(0.1)%/ E W/SciFi 35  $\frac{\sigma_E}{r} \sim 3\% \oplus \frac{13\%}{\sqrt{F}}$ 30 R&D: 0.08 25 Improve light collection 0.06 20 eff. and uniformity **SPHENIX** 0.04 Energy resolution for electrons 2.5x2.5 cm<sup>2</sup> region centered on a tower n~1 Input Energy (GeV) U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.





#### **BARREL: TWO OPTIONS**

Discussion in the following two talks by Joshua Crafts (CUA) and by Maria Zurek (ANL)

Complementary options for BECAL: SciGlass or Imaging Calorimeter





## HADRONIC CALORIMETRY

- Energy resolution driven by particle flow reconstruction
- Granularity driven by neutral cluster isolation and jet substructure measurements



soft, low multiplicity jets low energy hadrons (except for the very forward region)





## HADRONIC CALORIMETRY





Kaon

-1<eta<0

Pion

101

10

1 Momentum (GeV)  $10^{2}$ 



#### **BACKWARD HADRONIC CALORIMETER**

- Recycle scintillating plates from STAR
  - Embedded WLS fibers
  - SiPM readout
- Replace lead absorber by steel
- Full depth ~440mm only
  - It is indeed a tail catcher
  - High energy resolution is not needed
- Acceptance  $-4 < \eta < -1$











#### BARREL HADRONIC CALORIMETER

- Partly reuse sPHENIX barrel calorimeter
  - Replace SiPMs
  - Upgrade electronics
- Moderate energy resolution suffices
- Acceptance -1 < η < 1</li>













#### FORWARD HADRONIC CALORIMETER



#### Fe/Sc + W/Sc sandwich , ~6.9 $\lambda_{I}$

- New innovative design
  - High 3D granularity
- High energy resolution
- Acceptance 1 < η < 4</li>







## FORWARD HCAL INSERT

- Measure low angle high η particles
- See final talk by Miguel Arratia in this session













