PAUL E REIMER

EPIC CALORIMETRY WG

Newport News, VA 10 January 2023 Thanks to Calo WG, Conveners and esp. Alexander Kiselev, Alexander Baxilevsky and Elke C Aschenauer whose slides I've borrowed

CALORIMETRY

Why do we need what we need where it is?

SCIENCE REQUIREMENTS AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER

EIC Yellow Report

Electromagnetic calorimeter → Measure photons (E, angle), identify electrons

PbWO₄ Crystals (backward), W/SciFi Spacal (forward) Barrel: Pb/SciFi+imaging part or new Scintillating glass

Hadron calorimeter → Measure charged hadrons, neutrons and K_L^0 challenge achieve ~50%/ \sqrt{E} + 10% for low E hadrons (<E> ~ 20 GeV) Fe/Sc sandwich with longitudinal segmentation

Z

E&M CALORIMETRY

Electron/photon PID, energy, angle/position:

Coverage (in rapidity and energy), resolution, e/π , granularity, projectivity

E&M CALORIMETRY

Electron/photon PID, energy, angle/position:

Coverage (in rapidity and energy), resolution, e/π , granularity, projectivity

E&M CALORIMETRY

As documented in YR and "General, Functional, and Performance Requirements for the EIC Detector Systems"

	σ _E /E	E range, GeV	π [±] suppression (w/other subsystems)	π^0/γ discr.
e-endcap	$\frac{(2-3)\%}{\sqrt{E}} \oplus (1-2)\%$	0.05-18 GeV	Up to 10⁴	Up to 7 GeV/c
Barrel	$\frac{(7-10)\%}{\sqrt{E}} \oplus (1-3)\%$	0.05-50 GeV	Up to 10 ⁴	Up to 10 GeV/c
h-endcap	$\frac{(10-12)\%}{\sqrt{E}} \oplus (1-3)\%$	0.1-100 GeV	Up to 10 ⁴	Up to 50 GeV/c

- Continuous acceptance (particularly from eendcap to barrel)
- Minimal material budget on the way from the vertex (particularly for e-endcap to barrel)
- Photosensors and FEE tolerate magnetic field
- Operate at full luminosity and expected background conditions (rad. dose, neutron flux)

E-ENDCAP: PBWO₄

Well established technology

Compact & High granularity: $2 \times 2 \times 20$ cm³

High resolution: $\frac{\sigma_E}{E} = (0.4 - 1)\% \oplus \frac{(2-3)\%}{\sqrt{E}}$

Excellent e/π capabilities: π suppres. a few 10³

Radiation hard: >1000 krad

Temperature sensitive: d(LightYield)/dT = -(2-3)%/°C

Jlab-PrimEx eta/NPS PWO EMCal prototype

Consortium with >10 institutions

Extensive experience from recent PANDA (GSI) and CMS (CERN)

H-ENDCAP: W/SCIFI

Established technology: sPHENIX barrel EMCal

Compact: $X_0 = 0.7$ cm

High granularity: $R_m = 2cm$

Sampling Fraction: 2-3%

Modest Resolution: $\frac{\sigma_E}{E} \sim 3\% \oplus \frac{13\%}{\sqrt{E}}$

R&D:

Improve light collection eff. and uniformity

BARREL: TWO OPTIONS

HADRONIC CALORIMETRY

- Energy resolution driven by particle flow reconstruction
- Granularity driven by neutral cluster isolation and jet substructure measurements

soft, low multiplicity jets low energy hadrons (except for the very forward region)

HADRONIC CALORIMETRY

Yields vs momentum for a 20 x 250 ^{15/2} GeV configuration, -4 < η < 4

$E_{\min} = 500 \text{ MeV}$	Ideal	Acceptable
η	$\sigma_{E/_{E}\%}$	$\sigma_{E/_{E}\%}$
$-3.5 < \eta < -1.0$	$45/\sqrt{E}+7$	$50/\sqrt{E}+10$
$-1.0 < \eta < +1.0$	$85/\sqrt{E}+7$	$100/\sqrt{E}+10$
$+1.0 < \eta < +3.5$	$^{35}/_{\sqrt{E}}$	$50/\sqrt{E}+10$

Kaon

Pion

BACKWARD HADRONIC CALORIMETER

- Recycle scintillating plates from STAR
 - Embedded WLS fibers
 - SiPM readout
- Replace lead absorber by steel
- Full depth ~440mm only
 - It is indeed a tail catcher
 - High energy resolution is not needed
- Acceptance $-4 < \eta < -1$

STAR EEMC

BARREL HADRONIC CALORIMETER

- Partly reuse sPHENIX barrel calorimeter
 - Replace SiPMs
 - Upgrade electronics
- Moderate energy resolution suffices
- Acceptance -1 < η < 1

FORWARD HADRONIC CALORIMETER

- New innovative design
 - High 3D granularity
- High energy resolution
- Acceptance 1 < η < 4

Fe/Sc + W/Sc sandwich , ~6.9 $\lambda_{\rm I}$

FORWARD HCAL INSERT

- Measure low angle high η particles
- See final talk by Miguel Arratia in this session

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.