A proximity-focusing RICH for the ePIC electron endcap

BNL
Duke
INFN Trieste
MSU
Stony Brook
[IJS Ljubljana]
ePIC Collaboration Meeting, Jefferson Lab, January 2023

Detector concept

- Recycle pfRICH concept \& simulation materials from the ATHENA EIC proposal
- A "simple" proximity focusing RICH
- $n \sim 1.020-1.050$ aerogel (perhaps in a two-layer configuration)
- $\quad \sim 40 \mathrm{~cm}$ long expansion volume
- Convert it into a pfRICH+LAPPD configuration ...
- ... complemented by a high-performance electronics to provide ~ 10 ps timing reference in addition to imaging

ATHENA proposal

(d)

Yellow Report requirement: $3 \sigma \pi / \mathrm{K}$ separation up to $7 \mathrm{GeV} / \mathrm{c}$

Design considerations

Aerogel

- Consider a different strategy for ePIC pfRICH (similar to Belle II)
- Rely on aerogel with a higher refractive index and higher transparency in the near UV range
- Do not use any acrylic filter
- Fully exploit HRPPD UV QE range
- EIC project meeting with M.Tabata (Chiba University) in December 2022:
- Belle II - like aerogel can be produced
- Refractive index up to ~ 1.05 (ideally: 1.03)
- Tile size up to $\sim 20 \mathrm{~cm}$
- Smaller sizes can probably even be manufactured with transparent tile sides

Photosensors: HRPPDs by Incom Inc.

- Low dark count rate and easier integration (as compared to SiPMs)
- High single photon timing resolution
- Low cost (as compared to other MCP-PMTs)
- Should work well in a~1.7 T field
- High resolution t_{0} comes as a bonus (provides by photons produced in the quartz window)

- Most part of the active LAPPD R\&D for EIC is done by the pfRICH-affiliated institutions

Acceptance boundaries optimization

ATHENA configuration

ePIC configuration

No reason to lose acceptance in η

- (1) Increase aerogel radius all the way up to $\sim R_{\max }$
- (2) Install a side wall mirror at $\sim R_{\max }$
- No reason to lose acceptance on the sensor plane
- Use conical mirrors at $\sim \mathrm{R}_{\min } \& \sim \mathrm{R}_{\text {max }}$

Geometric efficiency for a t_{0} reference

High energy charged particle will produce dozens of p.e.'s in the HRPPD window

Tile \#1
glass (quartz) window

```
charged particle (missing the "active" area)
```

Tile \#2

glass (quartz) window
ceramic body
ceramic body

- Even that the HRPPD active area (the photocathode and the MCP stack) is much smaller than the tile footprint, the Cherenkov light cone spot in a 5 mm thick (quartz) window has a base of $\sim 11 \mathrm{~mm}$ diameter
- By making the edge area reflective and / or tapered and / or perhaps just relying on a TIR, one should be able to gain timing performance over the whole surface, even though with a degraded resolution towards the tile edges, apparently

Geometric efficiency for imaging

Tile \#1
glass (quartz) window
glass (quartz) window
Tile \#2

Phetocatho
Photacatho
ceramic body
ceramic body

- If really needed, one should be able to "save" the Cherenkov photons, which would otherwise miss the photocathode, by funneling them away from the sensor dead area
- The IRT-based reconstruction procedure is already adjusted to handle such cases

Sensor pixellation

- Given the anticipated ring diameter and $<\mathrm{n}_{\mathrm{pe}}>$, expect average hit separation of $\sim 5 \mathrm{~cm}$

- Capacitively coupled LAPPDs with 4 mm pixellation are good enough to achieve single photon ring radius resolution $\sim 600 \mu \mathrm{~m}$ (beam test data), even without signal pre-amplification

Consider pixel size of $\sim 4 \mathrm{~mm}$ as a [temporary] design choice

Integration model

Boundary conditions in the ePIC e-endcap

Inner radius	$\sim 59 \mathrm{~mm}$
Outer radius	$\sim 650 \mathrm{~mm}$
Total length	$\sim 540 \mathrm{~mm}$

- Must fit into the DIRC support frame

- Limited length along the beam line
- Severe constraints around the beam pipe

Readout electronics concept

- Assume 24×24 HRPPD pixellation suffices ($\sim 4.2 \mathrm{~mm}$ pads) $->576$ pixels per $\sim 12 \times 12 \mathrm{~cm}^{2}$ footprint
- A hybrid of Nalu Scientific UDC and AARDVARC v4 chips assumed as a "reference ASIC"
- Shown: 16-channel ASICs assumed (would be better to have 32- or 64-channel ones, of course)
- $\sim 10 \mathrm{GS} / \mathrm{s}$ digitizer, $\sim 2 \mathrm{GHz}$ ABW, feature extraction, streaming capability (whatever it means), etc.
- OdB buffer amplifier ($12 \mathrm{~mW} / \mathrm{ch}$) available in ARRDVARC V4 $->$ need a similar solution for a $\sim 20 \mathrm{~dB}$ preamp
- Few kW of power dissipation for the whole pfRICH-like system seems to be a realistic estimate

Integration model

Sensor plane tiling scheme

- A detailed pfRICH CAD model exists
- Vessel, aerogel, mirrors, sensor plane, electronics mockup

- Services layout and installation procedure require more work

Services example: HV distribution

GEANT implementation

Standalone GEANT environment

- Vessel: full available length (54 cm), starting at $Z=-1187 \mathrm{~mm}$
- Gas volume filled with nitrogen
- Aerogel: 2 cm thick, segmented in <20 cm blocks
- <n> ~ 1.044 (Belle II parameterization)
- No acrylic filter
- Sensor plane at 12 cm from the rear side of the vessel
- Detailed HRPPD description (window, photocathode layer)
- QE plot as provided by Incom + 70\% safety factor
- Tile segmentation matching suggested HRPPD formfactor

- Active area 80% of the tile footprint, as suggested by Incom for future HRPPD models
- IRT: conical \& pyramid mirrors (and multiple optical paths per sensor) implemented

Accumulated Cherenkov ring images

Full $\sim 260 \mathrm{~mm}$ diameter rings at $\eta=-2.5$

> by Chandradoy Chatterjee

Default configuration: with inner and outer conical mirrors, but no pyramid ones

Performance plot examples

A combination of a more UV-transparent aerogel and HRPPD UV-extended QE spectrum can be a winning strategy, even that π / K gap at high momenta gets smaller as compared to the ATHENA case (<n>~1.019, SiPM peak QE @ 450 nm)

by Chandradoy Chatterjee

$>7 \sigma \pi / \mathrm{K}$ separation @ $7 \mathrm{GeV} / \mathrm{c}$

Fallback options

- In case ...
- Tracker requests some space back (and pfRICH ends up with $<40 \mathrm{~cm}$ long expansion volume)
- HRPPD PDE turns out to be substantially smaller than $\sim 30 \%$
- A higher level of π / K separation at and above $7 \mathrm{GeV} / \mathrm{c}$ is required
- ... one can also consider more sophisticated extensions
- Flat funneling mirrors in the acceptance
- Dual aerogel configuration a la Belle II

- Fresnel lenses in an open-vessel configuration?

Other studies

Mixed EICrecon / "Delphes" environment

by Kong Tu, Jan Vanek \& Chandradoy Chatterjee

- First create Delphes-like PID smearing matrices using standalone GEANT4 detectorlevel modeling
- Then use EPIC official software stack

- With "eicrecon.root" \& access to full reco'd tracks, apply pfRICH delphes-like parametrization for PID.
- We can make use of the official simulation campaign files (single particle, DIS, SIDIS, etc.)

https://github.com/KongTu/EICreconOutputReader

Mixed EICrecon / "Delphes" environment

by Kong Tu, Jan Vanek \& Chandradoy Chatterjee

- An example study with PYTHIA 8 MC generator for e / π separation.
- eCal pion rejections are based on 2 scenarios, 85\% and 95\% efficiency by cutting on E/p, study by D. Kalinkin (thanks!)
- pfRICH parametrization is based on the e / π table (up to $5 \mathrm{GeV} / \mathrm{c}$).
- Next step is to try on fully reconstructed
 tracks, lower energies, etc.
pfRICH may be more beneficial at high-y / low-x regions, where multiplicity of pion in backward is higher; pfRICH may be more useful on rejecting pions at lower energy configuration, e.g., 10×100 and $5 \times 41 \mathrm{GeV}$.

Magnetic field @ HRPPD location

by Zhengqiao Zhang

- Tolerance to the magnetic field strength is not the whole story
- Field direction should be reasonably aligned with the normal to sensor surface
- Oba et al., 1981

Fig. 11. Dependency of the output degradation in F 4129 on the off-axis sagnetic field.

Fig. 10. output degradation in three MCP-PMTs in the off-axis nagnetic field
 pfRICH: field-to-sensor-normal angle

Occupancy studies

Particle Pairwise Distance: $-4<\eta<-1$

- Distance is in $x-y$ plane at a z position of -1700 mm from the interaction point
by Brian Page

Blue = distance between each pair of particles in acceptance
Red = distance between closest two particles in acceptance Green = same as red, but for events with electron in acceptance

Summary

- Work on the proximity focusing RICH for ePIC e-endcap is well advanced
- Design choices
- GEANT simulations
- CAD model and integration
- Several other accompanying studies
- We will certainly be ready for the March Collaboration review

A Proximity-Focusing RICH for the ePIC Experiment

- Proposal -
(DRAFT)

Abhay Deshpande ${ }^{1}$, Christopher Dilks ${ }^{2,3}$, Alex Eslinger ${ }^{3}$, Tom Hemmick ${ }^{1}$, Alexander Jentsch ${ }^{4}$, Alexander Kiselev ${ }^{4}$, Henry Klest ${ }^{1}$, Samo Korpar ${ }^{6}$, Peter Križan ${ }^{6}$, Brian Page ${ }^{4}$, Rok Pestotnik ${ }^{6}$, Silvia Dalla Torre ${ }^{5}$, Zhoudunming Tu ${ }^{4}$, Thomas Ullrich ${ }^{4}$, Jan Vanek ${ }^{4}$, Anselm Vossen ${ }^{2,3}$, and Zhengqiao Zhang ${ }^{4}$
${ }^{3}$ Jefferson Lab, Newport News, Virginia 23606, USA
${ }^{1}$ Stony Brook University, Stony Brook, New York 11794, USA
${ }^{4}$ Brookhaven National Laboratory, Upton, New York 11973, USA
${ }^{5}$ INFN, Sezione di Trieste, Trieste, Italy
${ }^{2}$ Duke University, Durham, North Carolina 27708, USA
${ }^{6}$ Ljubljana University and J. Stefan Institute, Ljubljana, Slovenia

Indico category: https://indico.bnl.gov/category/458/
Mailing list: eic-projdet-pfrich-I@lists.bnl.gov

Backup

Wavelength range

- Is it really hopeless to work with aerogel in a deep UV range?

HRPPD 126 QE curve

<Property name="RAYLEIGH" unit="eV"> <value energy="1.500">495.305</value> <value energy="1.675">368.992</value> <value energy="1.850">276.148</value> <value energy="2.025">208.910</value> <value energy="2.200">159.280</value> <value energy="2.375">122.311</value> <value energy="2.550">94.4909</value> <value energy="2.725">73.5915</value> <value energy="2.900">58.2796</value> <value energy="3.075">46.5131</value> <value energy =" 3.250 " >37.2842 </value> <value energy="3.425">30.1133</value> <value energy $==3.600 ">24.4282</$ value> <value energy="3.775">19.7740</value> <value energy="3.950">16.1085</value> <value energy="4.125">13.0108</value> <value energy ="4.300">10.6804</value> <value energy $=44.475^{\prime \prime}>8.74212$ </value> <value energy="4.650">7.22615</value> <value energy="4.825">6.03070</value> <value energy= \(4.825>6.03070</\) value $>$ <value energy="5.000>>5.02443</value> value energy="5.350">3.8331</value> value <vatue energy $=5.525$ ">3.3701</value <value energy="5.700">2.9749</value>

Fig. 2. Transmittance as a function of wavelength for the Belle II RICH aerogel samples of $n=1.045$ (red) and 1.055 (blue) [2]. The thickness for both samples is 20 mm . (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
<Property name="ABSLENGTH" unit="eV"> <value energy="7.75">1.64386</value> <value energy="6.88889">5.77248</value> - ~ ~ 5mm @ 180nm (units: [mm]) <value energy="5.91945">11.8578</value> <value energy="5.42017">15.8411</value> <value energy="5.17722">21.314</value>

$$
\frac{d E}{d x}=4 \pi^{2} e^{2} \int_{\beta n>1} \frac{1}{\lambda^{3}}\left(1-\frac{1}{\beta^{2} n^{2}}\right) d \lambda
$$

~5mm @ 250nm (units: [mm])

HRPPD re-design effort for EIC

Variety of HRPPD anode base plate pixellation, with 40-pin Samtec connector footprints on the outer side

32×32 square pads (present layout)

40×40 square pads (DIRC)

24×24 square pads (pfRICH)

24×24 charge sharing pads (pfRICH)

- Polish ceramic manufacturer (Techtra) can produce such layouts in house
- First iteration will be a test bench HRPPD tile with a mixed layout, to test them all at once
- AK to provide a final set of drawings for this layout
- Tooling and fabrication will take 2-3 months

HRPPD re-design effort for EIC

pad (inner) size

connector (outer) side

- Will use existing side walls / windows; pad size tuned to the new active area size of 108 mm - Pixellation patterns $24 \times 24,32 \times 32,40 \times 40,48 \times 48,64 \times 64+1$ charge cloud profiling field

