A proximity-focusing RICH for the ePIC electron endcap

1

BNL Duke INFN Trieste MSU Stony Brook [IJS Ljubljana]

. . .

ePIC Collaboration Meeting, Jefferson Lab, January 2023

Detector concept

- Recycle pfRICH concept & simulation materials from the ATHENA EIC proposal
 - A "simple" proximity focusing RICH
 - n ~ 1.020 1.050 aerogel (perhaps in a two-layer configuration)
 - ~40 cm long expansion volume
- Convert it into a pfRICH+LAPPD configuration ...
- ... complemented by a high-performance electronics to provide ~10ps timing reference in addition to imaging

Yellow Report requirement: $3\sigma \pi/K$ separation up to 7 GeV/c

Design considerations

Aerogel

ATHENA configuration: <n> \sim 1.019, acrylic filter with a 350nm cutoff, SiPMs with a peak QE \sim 450 nm -> <N_{pe}> \sim 10

- Consider a different strategy for ePIC pfRICH (similar to Belle II)
 - Rely on aerogel with a higher refractive index and higher transparency in the near UV range
 - Do not use any acrylic filter
 - Fully exploit HRPPD UV QE range
- EIC project meeting with M.Tabata (Chiba University) in December 2022:
 - Belle II like aerogel can be produced
 - Refractive index up to ~1.05 (ideally: 1.03)
 - Tile size up to ~20cm
 - Smaller sizes can probably even be manufactured with transparent tile sides

Photosensors: HRPPDs by Incom Inc.

- Low dark count rate and easier integration (as compared to SiPMs)
- High single photon timing resolution
- Low cost (as compared to other MCP-PMTs)
- Should work well in a ~1.7 T field
- High resolution t₀ comes as a bonus (provides by photons produced in the quartz window)

Most part of the active LAPPD R&D for EIC is done by the pfRICH-affiliated institutions

Acceptance boundaries optimization

Geometric efficiency for a t₀ reference

ceramic body

ceramic body

- Even that the HRPPD active area (the photocathode and the MCP stack) is much smaller than the tile footprint, the Cherenkov light cone spot in a 5 mm thick (quartz) window has a base of ~11 mm diameter
 - By making the edge area reflective and / or tapered and / or perhaps just relying on a TIR, one should be able to gain timing performance over the whole surface, even though with a degraded resolution towards the tile edges, apparently

Tiling a flat sensor surface without gaps must be a clear benefit

- If really needed, one should be able to "save" the Cherenkov photons, which would otherwise miss the photocathode, by funneling them away from the sensor dead area
 - The IRT-based reconstruction procedure is already adjusted to handle such cases

Sensor pixellation

• Given the anticipated ring diameter and <n_{pe}>, expect average hit separation of ~5 cm

• Capacitively coupled LAPPDs with 4 mm pixellation are good enough to achieve single photon ring radius resolution \sim 600 μ m (beam test data), even without signal pre-amplification

Consider pixel size of ~4 mm as a [temporary] design choice

Integration model

Boundary conditions in the ePIC e-endcap

Inner radius	~59 mm
Outer radius	~650 mm
Total length	~540 mm

Must fit into the DIRC support frame

- Limited length along the beam line
- Severe constraints around the beam pipe

Readout electronics concept

- Assume 24x24 HRPPD pixellation suffices (~4.2mm pads) -> 576 pixels per ~12x12 cm² footprint
- A hybrid of Nalu Scientific UDC and AARDVARC v4 chips assumed as a "reference ASIC"
 - Shown: 16-channel ASICs assumed (would be better to have 32- or 64-channel ones, of course)
 - ~10GS/s digitizer, ~2GHz ABW, feature extraction, streaming capability (whatever it means), etc.
 - 0dB buffer amplifier (12 mW/ch) available in ARRDVARC V4 -> need a similar solution for a ~20dB preamp
 - Few kW of power dissipation for the whole pfRICH-like system seems to be a realistic estimate
 A coordinated effort with eRD109 and other PID subsystems is required

Integration model

Sensor plane tiling scheme

- A detailed pfRICH CAD model exists
 - Vessel, aerogel, mirrors, sensor plane, electronics mockup
- Services layout and installation procedure require more work

Services example: HV distribution

- 68 HRPPD tiles total
- 5 HV levels + ground per tile
- Therefore, need at most ten cables and 52-pin connectors (with spares)

GEANT implementation

Standalone GEANT environment

- Vessel: full available length (54 cm), starting at Z = -1187mm
- Gas volume filled with nitrogen
- Aerogel: 2 cm thick, segmented in <20 cm blocks
- <n> ~ 1.044 (Belle II parameterization)
- No acrylic filter
- Sensor plane at 12 cm from the rear side of the vessel
- Detailed HRPPD description (window, photocathode layer)
- QE plot as provided by Incom + 70% safety factor
- Tile segmentation matching suggested HRPPD formfactor
- Active area 80% of the tile footprint, as suggested by Incom for future HRPPD models

• IRT: conical & pyramid mirrors (and multiple optical paths per sensor) implemented

Accumulated Cherenkov ring images

 η = -2.0: part of the ring is reflected by a conical mirror

by Chandradoy Chatterjee

Default configuration: with inner and outer conical mirrors, but no pyramid ones

Performance plot examples

A combination of a more UV-transparent aerogel and HRPPD UV-extended QE spectrum can be a winning strategy, even that π/K gap at high momenta gets smaller as compared to the ATHENA case (<n> ~ 1.019, SiPM peak QE @ 450 nm)

GeV/c

separation @

ט א**/**א

~

Fallback options

- In case ...
 - Tracker requests some space back (and pfRICH ends up with <40cm long expansion volume)
 - HRPPD PDE turns out to be substantially smaller than ~30%
 - A higher level of π/K separation at and above 7 GeV/c is required
- ... one can also consider more sophisticated extensions
 - Flat funneling mirrors in the acceptance
 - Dual aerogel configuration a la Belle II

Fresnel lenses in an open-vessel configuration?

Other studies

Mixed ElCrecon / "Delphes" environment

by Kong Tu, Jan Vanek & Chandradoy Chatterjee

- First create Delphes-like PID smearing matrices using standalone GEANT4 detectorlevel modeling
- Then use EPIC official software stack

- With "eicrecon.root" & access to full reco'd tracks, apply pfRICH *delphes-like* parametrization for PID.
- We can make use of the official simulation campaign files (single particle, DIS, SIDIS, etc.)

https://github.com/KongTu/EICreconOutputReader

Mixed ElCrecon / "Delphes" environment

by Kong Tu, Jan Vanek & Chandradoy Chatterjee

- An example study with PYTHIA 8 MC generator for e/π separation.
- eCal pion rejections are based on 2 scenarios, 85% and 95% efficiency by cutting on E/p, study by <u>D. Kalinkin</u> (thanks!)
- pfRICH parametrization is based on the e/π table (up to 5 GeV/c).
- Next step is to try on fully reconstructed tracks, lower energies, etc.

pfRICH may be *more* beneficial at high-y / low-x regions, where multiplicity of pion in backward is higher; pfRICH may be *more* useful on rejecting pions at lower energy configuration, e.g., 10x100 and 5x41 GeV.

Magnetic field @ HRPPD location

by Zhengqiao Zhang

- Tolerance to the magnetic field *strength* is not the whole story
 - Field *direction* should be reasonably aligned with the normal to sensor surface
 - Oba et al., 1981

Fig. 11. Dependency of the output degradation in F4129 on the off-axis magnetic field.

pfRICH: field-to-sensor-normal angle

Direct measurements at Argonne will be done in March

Occupancy studies

Particle Pairwise Distance: $-4 < \eta < -1$

□ Distance is in x-y plane at a z position of -1700 mm from the interaction point

Blue = distance between each pair of particles in acceptance Red = distance between closest two particles in acceptance Green = same as red, but for events with electron in acceptance

by Brian Page

Summary

- Work on the proximity focusing RICH for ePIC e-endcap is well advanced
 - Design choices
 - GEANT simulations
 - CAD model and integration
 - Several other accompanying studies
- We will certainly be ready for the March Collaboration review

A Proximity-Focusing RICH for the ePIC Experiment - Proposal -

(DRAFT)

Abhay Deshpande¹, Christopher Dilks^{2,3}, Alex Eslinger³, Tom Hemmick¹, Alexander Jentsch⁴, Alexander Kiselev⁴, Henry Klest¹, Samo Korpar⁶, Peter Križan⁶, Brian Page⁴, Rok Pestotnik⁶, Silvia Dalla Torre⁵, Zhoudunming Tu⁴, Thomas Ullrich⁴, Jan Vanek⁴, Anselm Vossen^{2,3}, and Zhengqiao Zhang⁴

³Jefferson Lab, Newport News, Virginia 23606, USA
 ¹Stony Brook University, Stony Brook, New York 11794, USA
 ⁴Brookhaven National Laboratory, Upton, New York 11973, USA
 ⁵INFN, Sezione di Trieste, Trieste, Italy
 ²Duke University, Durham, North Carolina 27708, USA
 ⁶Ljubljana University and J. Stefan Institute, Ljubljana, Slovenia

Indico category: https://indico.bnl.gov/category/458/

Mailing list: eic-projdet-pfrich-l@lists.bnl.gov

Backup

Wavelength range

Is it really hopeless to work with aerogel in a deep UV range?

HRPPD 126 QE curve

 $d\lambda$

 $\overline{\beta^2 n^2}$

Obviously, more studies needed

```
<property name="RAYLEIGH" unit="eV">
<value energy="1.500">495.305</value>
<value energy="1.675">368.992</value>
<value energy="1.850">276.148</value>
<value energy="2.025">208.910</value>
<value energy="2.200">159.280</value>
<value energy="2.375">122.311</value>
<value energy="2.550">94.4909</value>
<value energy="2.725">73.5915</value>
<value energy="2.900">58.2796</value>
<value energy="3.075">46.5131</value>
<value energy="3.250">37.2842</value>
<value energy="3,425">30,1133</value>
<value energy="3,600">24,4282</value>
<value energy="3.775">19.7740</value>
<value energy="3,950">16,1085</value>
<value energy="4.125">13.0108</value>
<value energy="4.300">10.6804</value>
<value energy="4,475">8.74212</value>
<value energy="4.650">7.22615</value>
<value energy="4.825">6.03070</value>
<value energy="5.000">5.02443</value>
<value energy="5.175">4.3785</value>
<value energy="5.350">3.8331</value>
<value energy="5.525">3.3701</value>
<value energy="5.700">2.9749</value>
```

of n = 1.045 (red) and 1.055 (blue) [2]. The thickness for both samples is 20 mm . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

HRPPD re-design effort for EIC

Variety of HRPPD anode base plate pixellation, with 40-pin Samtec connector footprints on the outer side

- Polish ceramic manufacturer (Techtra) can produce such layouts in house
- First iteration will be a test bench HRPPD tile with a mixed layout, to test them all at once
 - AK to provide a final set of drawings for this layout
 - Tooling and fabrication will take 2-3 months

HRPPD re-design effort for EIC

pad (inner) size

connector (outer) side

- Will use existing side walls / windows; pad size tuned to the new active area size of 108 mm
 - Pixellation patterns 24x24, 32x32, 40x40, 48x48, 64x64 + 1D charge cloud profiling field