EPIC dRICH Dual Ring Imaging Cherenkov Detector

Christopher Dilks

ePIC Collaboration Meeting

January 2023

Research supported by the

Outline

ePIC Simulation

- Geometry and Reconstruction
- Performance studies

dRICH Prototype

- Beam tests
- EIC-driven tests
- Characterization

DD4hep Geometry

3D Interactive View!

https://eic.github.io/epic/geoviewer?file=artifacts/tgeo/drich_only.root&ite m=default;1&opt=zoom200;ROTY290;ROTZ350;trz0;trr0;ctrl;all

C. Dilks

Geometry - Details

Example Event

C. Dilks

dRICH Integrated in Full ePIC Geometry

Arches

◆ Includes effects from magnetic field, material in front (e.g., tracker support), and more

ePIC Software Stack Integration

PID via IRT (Indirect Ray Tracing)

- Fully integrated with Juggler, used for present ePIC dRICH performance studies
- Integration into EICrecon mostly complete, but undergoing testing
- Standalone IRT library permits standalone performance studies too

PID Integration: Modular Reconstruction Strategy

Support PID in a modular, shareable, future-proof way

Algorithms are small, focused, and generalized to support other PID subsystems

• In some cases, other detectors (e.g. PMT digitizer)

Keep algorithms independent of the reconstruction framework

C. Dilks

C. Dilks

Algorithm Integration Welcome!

C. Dilks

ePIC dRICH

11

Under the hood...

14

Charged Particle Track Projection

ePIC dRICH

Example: 4 GeV pions in horizontal y=0 plane

Reconstructed track points in Aerogel and Gas

Digitization

Common PMT Digitizer Algorithm

- Trigger parameters (gate, pedestal, etc.)
- Quantum Efficiency
- Empirical Safety Factor 70%
- Pixel Gap cuts (~88% survive)
- TODO:
 - noise injection (in progress, NISER)
 - Time over Threshold (ToT)
 - Streaming readout?

٨	QE
{325*dd4hep::nm,	0.04},
{340*dd4hep::nm,	0.10},
{350*dd4hep::nm,	0.20},
{370*dd4hep::nm,	0.30},
{400*dd4hep::nm,	0.35},
{450*dd4hep::nm,	0.40},
{500*dd4hep::nm,	0.38},
{550*dd4hep::nm,	0.35},
{600*dd4hep::nm,	0.27},
{650*dd4hep::nm,	0.20},
{700*dd4hep::nm,	0.15},
{750*dd4hep::nm,	0.12},
{800*dd4hep::nm,	0.08},
{850*dd4hep::nm,	0.06},
{900*dd4hep::nm,	0.04}

ePIC dRICH

 \frown

// triggering					
double	hitTimeWindow	=	<pre>20.0*dd4hep::ns;</pre>		
double	timeStep	=	0.0625*dd4hep::ns;		
double	speMean	=	80.0;		
double	speError	=	16.0;		
double	pedMean	=	200.0;		
double	pedError	=	3.0;		

SiPM pixel gaps

16

Event Display: all incident photons

- Event display
 - Green boxes = SiPMs
 - 1 histogram bin = 1 pixel
- Rings from a single 40 GeV pion
- Shows <u>all incident photons</u> on the sensors (before Q.E.)

Event Display: digitized hits

- Digitization:
 - Quantum Efficiency (20-40%)
 - Pixel gap cuts (88%)
 - Safety factor (70%)
- # hits << # photons
- Still does not include SiPM noise!

C. Dilks

Indirect Ray Tracing (IRT)

I Given sensor hits and optics, determine the photon emission angle, sampled along a charged particle trajectory

- Newton-Gauss iterative solver for optical path
- Compact, standalone library used for Geant4 and ATHENA

https://github.com/eic/irt

Figures from Alexander Kiselev, From meeting on RICH Pattern Recognition Challenges https://agenda.infn.it/event/30966/

C. Dilks

Machine Learning

For Particle Identification

AI4EIC 2022 Hackathon: <u>https://indico.bnl.gov/event/16586/page/435-hackathon</u>

- Challenge: use ML and these data to classify between pions and kaons
 - Charged particle momentum (p,θ,ϕ) + photon hit positions (x,y,z)
 - Involved varying momenta, noise hits, and B-field
- Future: Integrate these techniques into ElCrecon (O. Hassan)

For Detector Design

- DD4hep software and geometry parameterizations are in general receptive to configuration changes
- Discussions are underway how to integrate detector design optimization with the ePIC stack
- See Cristiano Fanelli's talk: AI/ML activities and next steps (Monday)

ePIC dRICH

21

C. Dilks

Performance Studies

Acceptance

- 50 GeV pions
- Number of Photoelectrons (NPE) from gas radiator
- Acceptance limits:

1.3 < η < 2.3

 $11.5^{\circ} < \theta < 30^{\circ}$

• Optics could be improved...

Study from C. Chatterjee

Performance Studies - Gas Radiator

C. Dilks

ePIC dRICH

24

Reconstructed Cherenkov Angle vs. Momentum

Points: reconstructed Cherenkov Angle

Curves: expected Cherenkov angle

dRICH Prototype

C. Dilks

dRICH Prototype Tests

Figures from M. Contalbrigo

dRICH Prototype Tests

Figures from M. Contalbrigo

28

dRICH Prototype Tests - Radiator Interplay

Test at 50 GeV mixed hadron beam with tagging by beam instrumentation (3x gas Cherenkov)

C. Dilks

29

EIC-driven SiPMs and Readout

Hamamatsu S13361-3050

ALCOR chip

MPPC arrays procurement ongoing Front-end design being finalized ALCOR v2 (better dynamic range and rate) ready for production (INFN in-kind)

ALCOR chip (high-rate ToT architecture) in streaming mode

- 50 ps time bin
- 500 kHz rate per channel
- cryogenic compatible

Streaming readout

ePIC dRICH

Integrated Cooling, In-situ annealing

30

Optical Characterization

Laboratory characterization of optical properties

Radiators: refractive index, transmittance, surface planarity, forward scattering

Mirrors: pointlike image, shape accuracy, surface rms

Optical Characterization

Samples from Aerogel Factory (Japan)

ePIC dRICH

Figures from M. Contalbrigo

32

dRICH Mechanics and Integration

Global layout and tolerances

Readout modular unit and services

Composite materials and structural study (also for the over-pressure version)

ePIC dRICH

 $\Delta_{Z-dir} = +0 / - 0.21 \text{ cm}$

33

Figures from M. Contalbrigo

Summary

Simulation and Reconstruction

- Geometry implemented in DD4hep
- Reconstruction (PID) in Juggler, migrating to ElCrecon as standalone algorithms
- Performance studies well underway

Prototype

- Recent beam test shows promising results
- Moving toward EIC-driven prototyping
- Optical characterization and testing

Backup

ePIC dRICH Software Project Page

https://github.com/orgs/eic/projects/4/

- Tracks GitHub Issues and Pull Requests from all repositories
- Help Wanted on Open Issues!
- More Issues (TODOs) welcome

Todo 13	In Progress 8	Done 26
EICrecon #352 Add noise injection option to PhotoMultiplierHitDigi	epic #123 dRICH: update mirror parameterization	⊘ epic #108 dRICH: check and improve the readout cellID bit fields
 EICrecon #353 Determine default PhotoMultiplierHitDigi_factory paramaters 	• epic #18 dRICH: sensor material should not be AirOptical	✤ epic #173 ··· fix(dRICH): slightly increase envelope radii to be consistent with menagerie
for dRICH SiPMs • epic #175 dRICH: add sensor services	\$; epic #42 (dRICH): dRICH large photon sensor mode for focal point region mapping	Pepic #158 feat(PID): rescale pfRICH and sync fixes from the dRICH
	; EDM4eic #1 legacy support: Cherenkov data model for	

Pions at 21.9°

- 40 GeV pions thrown at $\theta = 21.9^{\circ}$
- Something is causing multiple scattering, all other θ regions behave as expected
- Example multi-track events

C. Dilks

Pions at 21.9°

ePIC dRICH

• After Digitization

Pions at 21.9°

The cause: tracker support

Services

- Use empty azimuthal space between sensors
- Expect no reflected photons in these regions

DD4hep Geometry

3D Interactive View!

https://eic.github.io/epic/geoviewer?file=artifacts/tgeo/drich_only.root&ite m=default;1&opt=zoom200;ROTY290;ROTZ350;trz0;trr0;ctrl;all

C. Dilks

Modular Reconstruction Strategy

Generic algorithms

- Modular: each algorithm focuses on one thing, e.g.:
 - Digitization
 - Track Projection
 - Running IRT
- Each algorithm has 2 components:
 - Framework-independent algorithm (only depends on data model)
 - Framework boilerplate algorithm runner (EICrecon factories and processors)
- Multiple input collections, one output collection

Algorithms are generalized to <u>support other PID detectors</u>: pfRICH, mRICH, DIRC, ...

• And in some cases, other subsystems (e.g., PMT digitization)

To Do: PID Performance Parameterization

Parameterization generator code:

- Efficiency in bins of (η ,p), for pairs in { π ,K,p}
- Produces configuration for Delphes fast simulation (screenshot)
- Plan to make usable by full simulations
 - (until PID is integrated in full production)

add EfficiencyFormula {211	} {321} {		
(eta< 1.20 eta>= 3.	60 pt * cosh(eta) <	0.90 pt * cosh(eta) >= 27.00	0) * (0.00) +
(1.20 <= eta && eta <	1.60) * (0.90 <= pt	* cosh(eta) && pt * cosh(eta) <	1.40) * (0.000000) +
(1.20 <= eta && eta <	1.60) * (1.40 <= pt	* cosh(eta) && pt * cosh(eta) <	2.90) * (0.000000) +
(1.20 <= eta && eta <	1.60) * (2.90 <= pt	* cosh(eta) && pt * cosh(eta) <	4.20) * (0.000000) +
(1.20 <= eta && eta <	1.60) * (4.20 <= pt	* cosh(eta) && pt * cosh(eta) <	5.50) * (0.000000) +
(1.20 <= eta && eta <	1.60) * (5.50 <= pt	* cosh(eta) && pt * cosh(eta) <	10.00) * (0.000000) +
(1.20 <= eta && eta <	1.60) * (10.00 <= pt	* cosh(eta) && pt * cosh(eta) <	15.00) * (0.000381) +
(1.20 <= eta && eta <	1.60) * (15.00 <= pt	* cosh(eta) && pt * cosh(eta) <	20.00) * (0.026793) +
(1.20 <= eta && eta <	1.60) * (20.00 <= pt	* cosh(eta) && pt * cosh(eta) <	27.00) * (0.140689) +
(1.60 <= eta && eta <	2.00) * (0.90 <= pt	* cosh(eta) && pt * cosh(eta) <	$1.40) \times (0.000000) +$

C. Dilks