

ePIC Collaboration meeting 9-11 January 2023 Jefferson Lab

Cherenkov PID: photosensors

P. Antonioli – INFN Bologna

on behalf of the ePIC Cherenkov PID Working Group (and special thanks to A. Kiselev, R. Preghenella and J. Schwiening)

photosensors for Cerenkov PID

"The objective of the R&D effort presented here is to **mitigate technical, cost, and schedule risk related to readout sensors of EIC Cherenkov detectors and Calorimeters.** The call for this proposal requests that this R&D effort comes to a clear and well-informed decision for a baseline sensor solution for each PID detector in FY22. <u>Our common consensus is that R&D effort beyond FY22 is</u> <u>absolutely necessary</u> in order to be able to form a decision that capitalizes on all state-of-the-art technologies to mitigate all of the risks specified above". **from eRD110 proposal**

Cherenkov PID photosensors as of Jan 2023

backward RICH	hpDIRC	dRICH
LAPPD/HRPPD	MCP-PMT (\rightarrow HRPPD?)	SiPM

LAPPD (20x20 cm): Large Area Picosecond Photon Detector

HRPPD (10x20 cm): High Rate Picosecond Photon Detector

strip/pixelated readout

SIPM: Silicon Photo Multipliers / Multi-Pixel Photon Counter \rightarrow MPPC arrays ("SiPMs tile")

Disclaimer:

- no discussion about electronics
- no discussion about MCP-PMT for DIRC (no recent R&D)

"what happened since last ePIC meeting?"

the candidates table (June 2022)

eRD110 presentation shown at "From RICH to EIC" / AGS/RHIC user meeting – June 2022

SiPM: the R&D program so far (an outline)

sensor	 SiPM selection by manufacturer, Vbd, SPAD cell R&D with FBK 	
electronics	SiPM carriers/adapters – readout cards for ALCOR ASIC	SIPM never used so far
irradiation	 with proton beams (140 MeV) fluences from 10⁹ to 10¹¹ 1 MeV-n_{eq}/cm² 	for Cerenkov detectors (retain single photon
annealing	High-temperature cycles (oven)electrically induced annealing	sensitivity). DCR increase with radiation well
characterization	I-V, DCR, LED pulse in climatic chamber	known risk.
test beams	test on dRICH prototy (aerogel only) using irradiated & annealed sensors	

DCR: after irradiation and post-annealing

Much more results discussed/presented at <u>RICH2022</u> and <u>CPAD2022</u> conferences.

2022 campaign: irradiation + annealing cycles

"Getting closer to the experimental setup"

 \succ irradiation fluence (10⁹ n_{eq}) split in five shots, interleaved by 30 minutes annealing

online annealing keeps DCR lower

Bringing irradiated sensors on a dRICH (prototype)

Antonioli – Cherenkov PID: photosensors

-100 -80 -60 -40 -20

Ρ.

hotosensor

Irradiated sensors on test beam/dRICH prototype (II)

*Take irradiated/annealed sensors (repeatedly) operated successfully at test beam home message S/N ratio very promising eRD110

Ring patterns

LAPPD: the R&D program so far (an outline)

sensor	 increased partnership with Incom: capacitively-coupled LAPPD received, progresses on 10/20 µm pore and development of 10x10 cm² HRPDD characterisation at Argonne up to 1.4 T tested effects of different B-field orientations 			
3-field				
networking	two LAPPD workshops well attended by the potential users community (b	eyond EIC)		
test beams	 test with aspheric lens (CERN & Fermilab) preliminary evaluation of timing performance 	LAPPD ("large are MCP") never used	ea d so fai	
sensor for EIC	 pixelization of HRPPD QE optimization make it more "tileable" (cit) 	Sensor at prototy by one company.	pe lev	
		Pixel	size 4mm	

Workshop #1 (March 2022) : <u>https://indico.bnl.gov/event/15059/</u>

Workshop #2 (October 2022): https://indico.bnl.gov/event/17475/

Jefferson Lab

Center for Frontiers

Description Organizers: Silvia Dalla Torre (INFN), Alexander Kiselev (BNL), Simona Malace (JLab), Deb Sankar Bhattacharya (INFN), Junqi Xie (ANL)

INFN

Hosted by CFNS: https://stonybrook.zoom.us/j/97182934798?pwd=TGJ2dkNwdUlqYS9Yc2owUVVTd05iUT09

Brookhaven

Jan 10 2023 – ePIC meeting

Argonne 🕰

hotosenso

30

20

magnetic field measurements

Argonne

Gain vs rotation in small field

B tilted w.r.t. electron motion

10000

1000

- small field

0428202

0

eRD110

Photosensor

Photon from laser

B=0.02 to 1.4 T Two **stripline** LAPPDs tested: # 118, 20 um MCP pore size # 89, 10 um

B normal to the tile surface – large field

Gain decreases from 10⁷ down to below 10⁶ Can be recovered (partially) increasing MCP voltage

test beam at Fermilab

eRD110 Photosensors

25

20

15

10

- G1 .. G4 COMPASS GEM reference tracker
- S1 .. S2 trigger scintillator counters

Argonne, BNL, Incom Inc., NFN Trieste, MSU

- A new 20 cm Gen II LAPPD tile #136: 10 μm pore MCPs
 - New set of the pixelated readout boards

Single event, [mV] units

Aspheric lens as a source of coherent Cherenkov photons

P. Antonioli – Cherenkov PID: photosensors

DRS4 chip#1: time(ch#15) – time(ch#13)

Jan 10 2023 – ePIC meeting

P. Antonioli – Cherenkov PID: photosensors

BNL, Incom Inc., NFN TS GE

CERN test beam preliminary results

Collected Charge per Pad

Distribution: (t_{MCP} - t_{LAPPD})

- The standard INCOM readout board is not optimized for multi-hit measurements (also 25mm pad size is too coarse)
- Time resolution spectrum is very preliminary (raw data shown)
- A novel DRS4 calibration procedure is being developed
- Detailed data analysis is required (test beam ended on 10/19, 2022)

HRPPD prototype \rightarrow "HRPPD for EIC"

HRPPD re-design effort for EIC

Variety of HRPPD anode base plate pixellation, with 40-pin Samtec connector footprints on the outer side

• Polish ceramic manufacturer (Techtra) claims they can produce such layouts in house

• First iteration will be a test bench HRPPD tile with a mixed layout, to test them all at once

* Take home message different pixelization schemes to be tested

Jan 10 2023 – ePIC meeting

P. Antonioli – Cherenkov PID: photosensors

LAPPD QE and aerogel

LAPPD #126 - QE

QE of LAPPD and SiPM quite different caveat: this is QE of just the photocatode!

*Take home message

optimization toward HRPPD "EIC" tile under way QE/PDE to be carefully investigared

the baseline table as of Jan 2023...

	SiPM	LAPPD
Area	Tiles available 8x8 (3x3 mm ²): 5.76 cm ²	20x20 cm ² and 10x10 cm ²
Pixel	3x3 mm ²	Finely pixelated schemes tested (capacity coupled LAPPD)
Magnetic field	insensitive	proper HV settings can recover gain at 6 10^6 as for MCP, B-field not oorthogal to tile difficult to manage
Radiation	irradiation/annealing cycles done. Tested	No data, but reasonable to expect not a problem
Availability	In stock. dRICH prototype SiPM plan will use HPK 13360. Exploratory run with FBK to improve NUV-HD	"In-stock" for 20 μm
Manufacturers	Many. Current focus on HPK and FBK/L-Foundry	Incom Inc
Price	1 k\$ /(8x8 tile 3x3 mm)	price per unit expected to drop at 20-30 k\$
Unit price	≈50-100 \$/cm²	52 \$/cm ²
Concerns	DCR increase with radiation management	Cross talk, integration (dead-space, QE, pixelation,)
Risks	None if mitigation of DCR increase "manageable"	Sensor must be brought to production level, time schedule challenging

Conclusions and outlook/what next in 2023

- EPIC DIRC, bRICH, dRICH have chosen "baseline" photosensors
- 2023 will be critical year **to consolidate** respective baseline choices

- validate proton irradiation results with neutron irradiations
- time resolution & irradiation/annealing
- check residual DCR is "manageable" (reconstruction) → annealing frequency
- [ALCOR (electronics): EIC-branch: integration (64 ch) + shutter implementation
- [dRICH prototype: fully equipped with SiPM]
- [dRICH prototype: "cooling & annealing-insitu" integration]

- have final result on B-field studies
- assess LAPPD performance (PDE + spatial resolution + timing) with "aerogel photons"
- toward EIC "LAPPD/HRPPD" tile
- [electronics: need to define it must cope with timing requirements

hpDIRC looks with interest at HRPPD result. Could be (cheaper) alternative to MCP-PMT

A final comment

The current baseline photosensors choices for bRICH , DIRC and dRICH are in a very different R&D space due to the different "design maturity" and "known issues" to be managed of the respective photosensors.

Backup

How much radiation?

potential location of photosensors: ≈ 1-5 10⁷ n/cm² every 1 fb⁻¹

10¹¹ n/cm² 1-MeV n_{eq} is a "true maximum"

- 30 weeks @ 10^{34} cm⁻² s⁻¹= 100 fb⁻¹ \rightarrow 1-5 10⁹ n/cm²
- 10¹¹ n/cm² would be reached in O(10+) years at full *L*!

A moderately hostile environment: $10^9 \text{ 1-MeV } n_{eq}/cm^2 \rightarrow most of the key physics topics$ $10^{10} \text{ 1-MeV } n_{eq}/cm^2 \rightarrow GPD and more statistically eager topics$ $10^{11} \text{ 1-MeV } n_{eq}/cm^2 \rightarrow may be we will never go here...}$

Can we use SiPM for a Cherenkov detector up to 10^{11} 1-MeV n_{eq} /cm² fluence?

How to mitigate the SiPM DCR? (II)

P. Antonioli – Cherenkov PID: photosensors

Commercial:

board	sensor	uCell (µm)	V _{bd} (V)	PDE (%)	DCR (kHz/mm²)	window	notes
HAMA1 –	S13360 3050VS	50	53	40	55	silicone	legacy model Calvi et. al
	S13360 3025VS	25	53	25	44	silicone	legacy model smaller SPAD
HAMA2 -	S14160 3050HS	50	38	50		silicone	newer model Iower V _{bd}
	S14160 3015PS	15	38	32	78	silicone	smaller SPADs radiation hardness
SENSL	MICROFJ 30035	35	24.5	38	50	glass	different producer and lower V _{bd}
	MICROFJ 30020	20	24.5	30	50	glass	the smaller SPAD version
BCOM	AFBR S4N33C013	30	27	43	111	glass	commercially available FBK-NUVHD

3.10 mm

P. Antonioli – Cherenkov PID: photosensors

LAPPD/HRPPD notation & history

LAPPD (20cm): Large Area Picosecond Photon Detector HRPPD (10cm): High Rate Picosecond Photon Detector

- 2009: LAPPD Collaboration founded by Prof. Henry Frisch (U Chicago)
 - Motivation: Low cost, large detection coverage with picosecond timing
- **2015**: Early commissioning trials at Incom, Inc.
- 2018: Demonstrated pilot production of LAPPDs
- 2022:
 - 141 LAPPDs starts all time
 - 6 HRPPDs starts in 2022
 - Current capability of 36 LAPPDs / year
 - Current max capacity of 96 LAPPDs / year
- Future:
 - Improved performance
 - Commercial production

LAPPDs / HRPPDs by Incom Inc.

23 cm

- An affordable large area (finely pixelated) vacuum photosensor
- 10x10 cm² or 20x20 cm² active area
- DC- (Gen I) or capacitively (Gen II) coupled species
- DC-coupled 1D strips or 2D pixellation
- Expected to be (very) cost efficient in mass production
- Quantum efficiency above 30% and uniform high gain up to ~10⁷
- Sub-mm spatial resolution for finely pixelated tiles
- Single-photon timing resolution on a ~50ps level or higher

Possible HRPPD applications for the ePIC

- mRICH / pfRICH: low dark noise, Time of Flight capability (vs SiPMs)
- DIRC: expected to be more cost-efficient (vs other MCP-PMTs)
- dRICH: problematic, because of the magnetic field orientation
 - Preferred variety:
 mRICH
 either DC-coupled or Gen II

 pfRICH
 either DC-coupled or Gen II

 DIRC
 DC-coupled

